1
|
Araújo Dos Santos DL, Santana de Curcio J, Novaes E, Maria de Almeida Soares C. miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation. Microbes Infect 2024:105435. [PMID: 39528107 DOI: 10.1016/j.micinf.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.
Collapse
Affiliation(s)
- Dener Lucas Araújo Dos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Setor de Genética, Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
2
|
Moraes D, Silva-Bailão MG, Bailão AM. Molecular aspects of copper homeostasis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:189-229. [PMID: 39389706 DOI: 10.1016/bs.aambs.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.
Collapse
Affiliation(s)
- Dayane Moraes
- Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | | |
Collapse
|
3
|
Pires ACMDS, Carvalho AR, Vaso CO, Mendes-Giannini MJS, Singulani JDL, Fusco-Almeida AM. Influence of Zinc on Histoplasma capsulatum Planktonic and Biofilm Cells. J Fungi (Basel) 2024; 10:361. [PMID: 38786716 PMCID: PMC11122510 DOI: 10.3390/jof10050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 05/25/2024] Open
Abstract
Histoplasma capsulatum causes a fungal respiratory disease. Some studies suggest that the fungus requires zinc to consolidate the infection. This study aimed to investigate the influence of zinc and the metal chelator TPEN on the growth of Histoplasma in planktonic and biofilm forms. The results showed that zinc increased the metabolic activity, cell density, and cell viability of planktonic growth. Similarly, there was an increase in biofilm metabolic activity but no increase in biomass or extracellular matrix production. N'-N,N,N,N-tetrakis-2-pyridylmethylethane-1,2 diamine (TPEN) dramatically reduced the same parameters in the planktonic form and resulted in a decrease in metabolic activity, biomass, and extracellular matrix production for the biofilm form. Therefore, the unprecedented observations in this study highlight the importance of zinc ions for the growth, development, and proliferation of H. capsulatum cells and provide new insights into the role of metal ions for biofilm formation in the dimorphic fungus Histoplasma, which could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| |
Collapse
|
4
|
Moraes D, Tristão GB, Rappleye CA, Ray SC, Ribeiro-Dias F, Gomes RS, Assunção LDP, Paccez JD, Zancopé-Oliveira RM, Silva-Bailão MG, Soares CMDA, Bailão AM. The influence of a copper efflux pump in Histoplasma capsulatum virulence. FEBS J 2024; 291:744-760. [PMID: 37950580 DOI: 10.1111/febs.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
5
|
Moraes D, Assunção LDP, Silva KLPD, Soares CMDA, Silva-Bailão MG, Bailão AM. High copper promotes cell wall remodeling and oxidative stress in Histoplasma capsulatum, as revealed by proteomics. Fungal Biol 2023; 127:1551-1565. [PMID: 38097329 DOI: 10.1016/j.funbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 12/18/2023]
Abstract
Histoplasma experiences nutritional stress during infection as a result of immune cells manipulating essential nutrients, such as metal ions, carbon, nitrogen, and vitamins. Copper (Cu) is an essential metallic micronutrient for living organisms; however, it is toxic in excess. Microbial pathogens must resist copper toxicity to survive. In the case of Histoplasma, virulence is supported by high-affinity copper uptake during late infection, and copper detoxification machinery during early macrophage infection. The objective of this study was to characterize the global molecular adaptation of Histoplasma capsulatum to copper excess using proteomics. Proteomic data revealed that carbohydrate breakdown was repressed, while the lipid degradation pathways were induced. Surprisingly, the production of fatty acids/lipids was also observed, which is likely a result of Cu-mediated damage to lipids. Additionally, the data showed that the fungus increased the exposition of glycan and chitin on the cell surface in high copper. Yeast upregulated antioxidant enzymes to counteract ROS accumulation. The induction of amino acid degradation, fatty acid oxidation, citric acid cycle, and oxidative phosphorylation suggest an increase in aerobic respiration for energy generation. Thus, H. capsulatum's adaptive response to high Cu is putatively composed of metabolic changes to support lipid and cell wall remodeling and fight oxidative stress.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kassyo Lobato Potenciano da Silva
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Moraes D, Rodrigues JGC, Silva MG, Soares LW, Soares CMDA, Bailão AM, Silva-Bailão MG. Copper acquisition and detoxification machineries are conserved in dimorphic fungi. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Molecular Interactions of the Copper Chaperone Atx1 of Paracoccidioides brasiliensis with Fungal Proteins Suggest a Crosstalk between Iron and Copper Homeostasis. Microorganisms 2023; 11:microorganisms11020248. [PMID: 36838213 PMCID: PMC9963772 DOI: 10.3390/microorganisms11020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein-protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.
Collapse
|
8
|
Rocha OB, Freitas E Silva KS, de Carvalho Junior MAB, Moraes D, Alonso A, Alonso L, do Carmo Silva L, Soares CMA, Pereira M. Proteomic alterations in Paracoccidioides brasiliensis caused by exposure to curcumin. J Proteomics 2022; 266:104683. [PMID: 35835316 DOI: 10.1016/j.jprot.2022.104683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Paracoccidioides spp. are the etiological agent of paracoccidioidomycosis, a disease that causes skin lesions and affect the lungs and other organs. The current management of the disease is long and has several side effects that often lead the patient to give up the treatment, sequelae and even death. The search for new forms of treatment that minimize these drawbacks is very important. Thus, natural compounds are targets of great interest. Curcumin is one of the main components of the tubers of Curcuma longa, presenting medicinal effects well described in the literature, including the antifungal effect on Paracocidioides brasiliensis. Nevertheless, the mechanisms related to the antifungal effect of such compound are still unknown, so the objective of the present research is to understand what changes occur in the metabolism of P. brasiliensis after exposure to curcumin and to identify the main targets of the compound. Proteomic analysis as based on nanoUPLC-MS analysis and the functional classification of the identified proteins. The main metabolic processes that were being regulated were biologically validated through assays such as fluorescence microscopy, EPR and phagocytosis. Proteomic analysis revealed that curcumin regulates several metabolic processes of the fungus, including important pathways for energy production, such as the glycolytic pathway, beta oxidation and the glyoxylate cycle. Protein synthesis was down-regulated in fungi exposed to curcumin. The electron transport chain and the tricarboxylic acid cycle were also down-regulated, indicating that both the mitochondrial membrane and the mitochondrial activity were compromised. Plasma membrane and cell wall structure were altered following exposure to the compound. The fungus' ability to survive the phagocytosis process by alveolar macrophages was reduced. Thus, curcumin interferes with several metabolic pathways in the fungus that causes paracoccidioidomycosis. BIOLOGICAL SIGNIFICANCE: The challenges presented by the current treatment of paracoccidioidomycosis often contributing to patients' withdrawal from treatment, leading to sequelae or even death. Thus, the search for new treatment options against this disease is growing. The discovery that curcumin is active against Paracoccidioides was previously reported by our study group. Here, we clarify how the compound acts on the fungus causing its growth inhibition and decreased viability. Understanding the mechanisms of action of curcumin on P. brasiliensis elucidates how we can seek new alternatives and which metabolic pathways and molecular targets we should focus on in this incessant search to bring the patient a treatment with fewer adverse effects.
Collapse
Affiliation(s)
- Olivia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Dayane Moraes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antônio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Laís Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Celia Maria Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
9
|
Ženíšková K, Grechnikova M, Sutak R. Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri. Front Cell Dev Biol 2022; 10:853463. [PMID: 35478954 PMCID: PMC9035749 DOI: 10.3389/fcell.2022.853463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Although copper is an essential nutrient crucial for many biological processes, an excessive concentration can be toxic and lead to cell death. The metabolism of this two-faced metal must be strictly regulated at the cell level. In this study, we investigated copper homeostasis in two related unicellular organisms: nonpathogenic Naegleria gruberi and the “brain-eating amoeba” Naegleria fowleri. We identified and confirmed the function of their specific copper transporters securing the main pathway of copper acquisition. Adjusting to different environments with varying copper levels during the life cycle of these organisms requires various metabolic adaptations. Using comparative proteomic analyses, measuring oxygen consumption, and enzymatic determination of NADH dehydrogenase, we showed that both amoebas respond to copper deprivation by upregulating the components of the branched electron transport chain: the alternative oxidase and alternative NADH dehydrogenase. Interestingly, analysis of iron acquisition indicated that this system is copper-dependent in N. gruberi but not in its pathogenic relative. Importantly, we identified a potential key protein of copper metabolism of N. gruberi, the homolog of human DJ-1 protein, which is known to be linked to Parkinson’s disease. Altogether, our study reveals the mechanisms underlying copper metabolism in the model amoeba N. gruberi and the fatal pathogen N. fowleri and highlights the differences between the two amoebas.
Collapse
|
10
|
Carlin AF, Beyhan S, Peña JF, Stajich JE, Viriyakosol S, Fierer J, Kirkland TN. Transcriptional Analysis of Coccidioides immitis Mycelia and Spherules by RNA Sequencing. J Fungi (Basel) 2021; 7:jof7050366. [PMID: 34067070 PMCID: PMC8150946 DOI: 10.3390/jof7050366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coccidioides immitis and C. posadasii are dimorphic fungi that transform from mycelia with internal arthroconidia in the soil to a tissue form known as a spherule in mammals. This process can be recapitulated in vitro by increasing the temperature, CO2 and changing other culture conditions. In this study, we have analyzed changes in gene expression in mycelia and young and mature spherules. Genes that were highly upregulated in young spherules include a spherule surface protein and iron and copper membrane transporters. Genes that are unique to Coccidioides spp. are also overrepresented in this group, suggesting that they may be important for spherule differentiation. Enriched GO terms in young spherule upregulated genes include oxidation-reduction, response to stress and membrane proteins. Downregulated genes are enriched for transcription factors, especially helix–loop–helix and C2H2 type zinc finger domain-containing proteins, which is consistent with the dramatic change in transcriptional profile. Almost all genes that are upregulated in young spherules remain upregulated in mature spherules, but a small number of genes are differentially expressed in those two stages of spherule development. Mature spherules express more Hsp31 and amylase and less tyrosinase than young spherules. Some expression of transposons was detected and most of the differentially expressed transposons were upregulated in spherules.
Collapse
Affiliation(s)
- Aaron F. Carlin
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
| | - Sinem Beyhan
- J. Craig Venter Institute, La Jolla, CA 92037, USA;
| | - Jesús F. Peña
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA; (J.F.P.); (J.E.S.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA; (J.F.P.); (J.E.S.)
| | - Suganya Viriyakosol
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
| | - Joshua Fierer
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
- Infectious Diseases Section, VA Healthcare San Diego, San Diego, CA 92161, USA
- Department of Pathology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Theo N. Kirkland
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
- Department of Pathology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
11
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
12
|
Beyond Melanin: Proteomics Reveals Virulence-Related Proteins in Paracoccidioides brasiliensis and Paracoccidioides lutzii Yeast Cells Grown in the Presence of L-Dihydroxyphenylalanine. J Fungi (Basel) 2020; 6:jof6040328. [PMID: 33271902 PMCID: PMC7711940 DOI: 10.3390/jof6040328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Species of the genus Paracoccidioides cause a systemic infection in human patients. Yeast cells of Paracoccidioides spp. produce melanin in the presence of L-dihydroxyphenylalanine and during infection, which may impact the pathogen’s survival in the host. To better understand the metabolic changes that occur in melanized Paracoccidioides spp. cells, a proteomic approach was performed to compare melanized and non-melanized Paracoccidioides brasiliensis and Paracoccidioides lutzii yeast cells. Melanization was induced using L-dihydroxyphenylalanine as a precursor, and quantitative proteomics were performed using reversed-phase nano-chromatography coupled to high-resolution mass spectrometry. When comparing melanized versus non-melanized cells, 1006 and 582 differentially abundant/detected proteins were identified for P. brasiliensis and P. lutzii, respectively. Functional enrichment and comparative analysis revealed 30 important KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways in melanized P. brasiliensis and 18 in P. lutzii, while differentially abundant proteins from non-melanized cells from these species were involved in 21 and 25 enriched pathways, respectively. Melanized cells presented an abundance of additional virulence-associated proteins, such as phospholipase, proteases, superoxide dis-mutases, heat-shock proteins, adhesins, and proteins related to vesicular transport. The results suggest that L-dihydroxyphenylalanine increases the virulence of Paracoccidioides spp. through complex mechanisms involving not only melanin but other virulence factors as well.
Collapse
|
13
|
de Curcio JS, Oliveira LN, Batista MP, Novaes E, de Almeida Soares CM. MiRNAs regulate iron homeostasis in Paracoccidioides brasiliensis. Microbes Infect 2020; 23:104772. [PMID: 33157279 DOI: 10.1016/j.micinf.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022]
Abstract
During pathogen interaction with the host, several mechanisms are used to favor or inhibit the infectious process; one is called nutritional immunity, characterized by restriction of micronutrients to pathogens. Several studies on fungi of the Paracoccidioides complex, have demonstrated that these pathogens remodel their metabolic pathways to overcome the hostile condition imposed by the host. However, molecular mechanisms that control the regulation of those metabolic changes are not fully understood. Therefore, this work characterizes the expression profile of miRNAs during iron deprivation and describes metabolic pathways putatively regulated by those molecules. Through analysis of RNAseq, 45 miRNAs were identified and eight presented alterations in the expression profile during iron deprivation. Among the differentially regulated miRNAs, five were more abundant in yeast cells during iron deprivation and interestingly, the analyses of genes potentially regulated by those five miRNAs, pointed to metabolic pathways as oxidative phosphorylation, altered in response to iron deprivation. In addition, miRNAs with more abundance in iron presence, have as target genes encoding transcriptional factors related to iron homeostasis and uptake. Therefore, we suggest that miRNAs produced by Paracoccidioides brasiliensis may contribute to the adaptive responses of this fungus in iron starvation environment.
Collapse
Affiliation(s)
- Juliana S de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Mariana P Batista
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Minas Gerais, CEP: 37200-000, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II Samambaia, CEP: 74690-900, Goiânia, Goiás, Brazil.
| |
Collapse
|