1
|
Veugen JMJ, Schoenmakers T, van Loo IHM, Haagmans BL, Leers MPG, Lamers MM, Lucchesi M, van Bussel BCT, van Mook WNKA, Nuijts RMMA, Savelkoul PHM, Dickman MM, Wolffs PFG. Advancing COVID-19 diagnostics: rapid detection of intact SARS-CoV-2 using viability RT-PCR assay. Microbiol Spectr 2024; 12:e0016024. [PMID: 39037224 PMCID: PMC11370235 DOI: 10.1128/spectrum.00160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Commonly used methods for both clinical diagnosis of SARS-CoV-2 infection and management of infected patients involve the detection of viral RNA, but the presence of infectious virus particles is unknown. Viability PCR (v-PCR) uses a photoreactive dye to bind non-infectious RNA, ideally resulting in the detection of RNA only from intact virions. This study aimed to develop and validate a rapid v-PCR assay for distinguishing intact and compromised SARS-CoV-2. Propidium monoazide (PMAxx) was used as a photoreactive dye. Mixtures with decreasing percentages of intact SARS-CoV-2 (from 100% to 0%) were prepared from SARS-CoV-2 virus stock and a clinical sample. Each sample was divided into a PMAxx-treated part and a non-PMAxx-treated part. Reverse transcription-PCR (RT-PCR) using an in-house developed SARS-CoV-2 viability assay was then applied to both sample sets. The difference in intact SARS-CoV-2 was determined by subtracting the cycle threshold (Ct) value of the PMAxx-treated sample from the non-PMAxx-treated sample. Mixtures with decreasing concentrations of intact SARS-CoV-2 showed increasingly lower delta Ct values as the percentage of intact SARS-CoV-2 decreased, as expected. This relationship was observed in both high and low viral load samples prepared from cultured SARS-CoV-2 virus stock, as well as for a clinical sample prepared directly from a SARS-CoV-2 positive nasopharyngeal swab. In this study, a rapid v-PCR assay has been validated that can distinguish intact from compromised SARS-CoV-2. The presence of intact virus particles, as determined by v-PCR, may indicate SARS-CoV-2 infectiousness. IMPORTANCE This study developed a novel method that can help determine whether someone who has been diagnosed with coronavirus disease 2019 (COVID-19) is still capable of spreading the virus to others. Current tests only detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, but cannot tell whether the particles are still intact and can thus infect cells. The researchers used a dye that selectively blocks the detection of damaged virions and free RNA. They showed that this viability PCR reliably distinguishes intact SARS-CoV-2 capable of infecting from damaged SARS-CoV-2 or free RNA in both cultured virus samples and a clinical sample. Being able to quickly assess contagiousness has important implications for contact tracing and safely ending isolation precautions. This viability PCR technique provides a simple way to obtain valuable information, beyond just positive or negative test results, about the actual risk someone poses of transmitting SARS-CoV-2 through the air or surfaces they come into contact with.
Collapse
Affiliation(s)
- Judith M. J. Veugen
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Tom Schoenmakers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Inge H. M. van Loo
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Bart L. Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathie P. G. Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
- Faculty of Science, Environmental Sciences, Open Universiteit, Heerlen, the Netherlands
| | - Mart M. Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mayk Lucchesi
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Bas C. T. van Bussel
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Walther N. K. A. van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Health Professions Education (SHE), Maastricht University, Maastricht, the Netherlands
| | - Rudy M. M. A. Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mor M. Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Petra F. G. Wolffs
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Maneein S, Sangsanont J, Limpiyakorn T, Sirikanchana K, Rattanakul S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: Removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172945. [PMID: 38703849 DOI: 10.1016/j.scitotenv.2024.172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly‑aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.
Collapse
Affiliation(s)
- Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
3
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
4
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
5
|
Shurson GC, Urriola PE, Schroeder DC. Biosecurity and Mitigation Strategies to Control Swine Viruses in Feed Ingredients and Complete Feeds. Animals (Basel) 2023; 13:2375. [PMID: 37508151 PMCID: PMC10376163 DOI: 10.3390/ani13142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
No system nor standardized analytical procedures at commercial laboratories exist to facilitate and accurately measure potential viable virus contamination in feed ingredients and complete feeds globally. As a result, there is high uncertainty of the extent of swine virus contamination in global feed supply chains. Many knowledge gaps need to be addressed to improve our ability to prevent virus contamination and transmission in swine feed. This review summarizes the current state of knowledge involving: (1) the need for biosecurity protocols to identify production, processing, storage, and transportation conditions that may cause virus contamination of feed ingredients and complete feed; (2) challenges of measuring virus inactivation; (3) virus survival in feed ingredients during transportation and storage; (4) minimum infectious doses; (5) differences between using a food safety objective versus a performance objective as potential approaches for risk assessment in swine feed; (6) swine virus inactivation from thermal and irradiation processes, and chemical mitigants in feed ingredients and complete feed; (7) efficacy of virus decontamination strategies in feed mills; (8) benefits of functional ingredients, nutrients, and commercial feed additives in pig diets during a viral health challenge; and (9) considerations for improved risk assessment models of virus contamination in feed supply chains.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
6
|
Cimmino C, Rodrigues Capítulo L, Lerman A, Silva A, Von Haften G, Comino AP, Cigoy L, Scagliola M, Poncet V, Caló G, Uez O, Berón CM. Presence of SARS-CoV-2 in urban effluents in south-east Buenos Aires, Argentina, May 2020 to March 2022. Rev Panam Salud Publica 2023; 47:e94. [PMID: 37324201 PMCID: PMC10261580 DOI: 10.26633/rpsp.2023.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives To implement and evaluate the use of wastewater sampling for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in two coastal districts of Buenos Aires Province, Argentina. Methods In General Pueyrredon district, 400 mL of wastewater samples were taken with an automatic sampler for 24 hours, while in Pinamar district, 20 L in total (2.2 L at 20-minute intervals) were taken. Samples were collected once a week. The samples were concentrated based on flocculation using polyaluminum chloride. RNA purification and target gene amplification and detection were performed using reverse transcription polymerase chain reaction for clinical diagnosis of human nasopharyngeal swabs. Results In both districts, the presence of SARS-CoV-2 was detected in wastewater. In General Pueyrredon, SARS-CoV-2 was detected in epidemiological week 28, 2020, which was 20 days before the start of an increase in coronavirus virus disease 2019 (COVID-19) cases in the first wave (epidemiological week 31) and 9 weeks before the maximum number of laboratory-confirmed COVID-19 cases was recorded. In Pinamar district, the virus genome was detected in epidemiological week 51, 2020 but it was not possible to carry out the sampling again until epidemiological week 4, 2022, when viral circulation was again detected. Conclusions It was possible to detect SARS-CoV-2 virus genome in wastewater, demonstrating the usefulness of the application of wastewater epidemiology for long-term SARS-CoV-2 detection and monitoring.
Collapse
Affiliation(s)
- Carlos Cimmino
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Leandro Rodrigues Capítulo
- Centro de Estudios Integrales de la Dinámica ExógenaUniversidad Nacional de La PlataLa PlataArgentinaCentro de Estudios Integrales de la Dinámica Exógena, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Andrea Lerman
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Andrea Silva
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Gabriela Von Haften
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Ana P. Comino
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Luciana Cigoy
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Marcelo Scagliola
- Obras Sanitarias Sociedad de EstadoMar del PlataArgentinaObras Sanitarias Sociedad de Estado, Mar del Plata, Argentina.
| | - Verónica Poncet
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología and FIBAMar del PlataArgentinaInstituto de Investigaciones en Biodiversidad y Biotecnología and FIBA, Mar del Plata, Argentina.
| | - Osvaldo Uez
- Instituto Nacional de Epidemiología “Dr. Juan H. Jara”Mar del PlataArgentinaInstituto Nacional de Epidemiología “Dr. Juan H. Jara”, Mar del Plata, Argentina.
| | - Corina M. Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología and FIBAMar del PlataArgentinaInstituto de Investigaciones en Biodiversidad y Biotecnología and FIBA, Mar del Plata, Argentina.
| |
Collapse
|
7
|
Girón-Guzmán I, Díaz-Reolid A, Cuevas-Ferrando E, Falcó I, Cano-Jiménez P, Comas I, Pérez-Cataluña A, Sánchez G. Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160914. [PMID: 36526211 PMCID: PMC9744676 DOI: 10.1016/j.scitotenv.2022.160914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/05/2023]
Abstract
During the current COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a reliable strategy both as a surveillance method and a way to provide an overview of the SARS-CoV-2 variants circulating among the population. Our objective was to compare two different concentration methods, a well-established aluminum-based procedure (AP) and the commercially available Maxwell® RSC Enviro Wastewater TNA Kit (TNA) for human enteric virus, viral indicators and SARS-CoV-2 surveillance. Additionally, both concentration methods were analyzed for their impact on viral infectivity, and nucleic acids obtained from each method were also evaluated by massive sequencing for SARS-CoV-2. The percentage of SARS-CoV-2 positive samples using the AP method accounted to 100 %, 83.3 %, and 33.3 % depending on the target region while 100 % positivity for these same three target regions was reported using the TNA procedure. The concentrations of norovirus GI, norovirus GII and HEV using the TNA method were significantly greater than for the AP method while no differences were reported for rotavirus, astrovirus, crAssphage and PMMoV. Furthermore, TNA kit in combination with the Artic v4 primer scheme yields the best SARS-CoV-2 sequencing results. Regarding impact on infectivity, the concentration method used by the TNA kit showed near-complete lysis of viruses. Our results suggest that although the performance of the TNA kit was higher than that of the aluminum procedure, both methods are suitable for the analysis of enveloped and non-enveloped viruses in wastewater by molecular methods.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pablo Cano-Jiménez
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
8
|
Kim KH, Kang G, Woo WS, Sohn MY, Son HJ, Park CI. Development of a Propidium Monoazide-Based Viability Quantitative PCR Assay for Red Sea Bream Iridovirus Detection. Int J Mol Sci 2023; 24:ijms24043426. [PMID: 36834834 PMCID: PMC9958570 DOI: 10.3390/ijms24043426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Red sea bream iridovirus (RSIV) is an important aquatic virus that causes high mortality in marine fish. RSIV infection mainly spreads through horizontal transmission via seawater, and its early detection could help prevent disease outbreaks. Although quantitative PCR (qPCR) is a sensitive and rapid method for detecting RSIV, it cannot differentiate between infectious and inactive viruses. Here, we aimed to develop a viability qPCR assay based on propidium monoazide (PMAxx), which is a photoactive dye that penetrates damaged viral particles and binds to viral DNA to prevent qPCR amplification, to distinguish between infectious and inactive viruses effectively. Our results demonstrated that PMAxx at 75 μM effectively inhibited the amplification of heat-inactivated RSIV in viability qPCR, allowing the discrimination of inactive and infectious RSIV. Furthermore, the PMAxx-based viability qPCR assay selectively detected the infectious RSIV in seawater more efficiently than the conventional qPCR and cell culture methods. The reported viability qPCR method will help prevent the overestimation of red sea bream iridoviral disease caused by RSIV. Furthermore, this non-invasive method will aid in establishing a disease prediction system and in epidemiological analysis using seawater.
Collapse
|
9
|
Palowski A, Balestreri C, Urriola PE, van de Ligt JLG, Sampedro F, Dee S, Shah A, Yancy HF, Shurson GC, Schroeder DC. Survival of a surrogate African swine fever virus-like algal virus in feed matrices using a 23-day commercial United States truck transport model. Front Microbiol 2022; 13:1059118. [PMID: 36569067 PMCID: PMC9782974 DOI: 10.3389/fmicb.2022.1059118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA viruses (NCLDVs) and is stable in a variety of environments, including animal feed ingredients as shown in previous laboratory experiments and simulations. Emiliania huxleyi virus (EhV) is another member of the NCLDVs, which has a restricted host range limited to a species of marine algae called Emiliania huxleyi. This algal NCLDV has many similar morphological and physical characteristics to ASFV thereby making it a safe surrogate, with results that are applicable to ASFV and suitable for use in real-world experiments. Here we inoculated conventional soybean meal (SBMC), organic soybean meal (SBMO), and swine complete feed (CF) matrices with EhV strain 86 (EhV-86) at a concentration of 6.6 × 107 virus g-1, and then transported these samples in the trailer of a commercial transport vehicle for 23 days across 10,183 km covering 29 states in various regions of the United States. Upon return, samples were evaluated for virus presence and viability using a previously validated viability qPCR (V-qPCR) method. Results showed that EhV-86 was detected in all matrices and no degradation in EhV-86 viability was observed after the 23-day transportation event. Additionally, sampling sensitivity (we recorded unexpected increases, as high as 49% in one matrix, when virus was recovered at the end of the sampling period) rather than virus degradation best explains the variation of virus quantity observed after the 23-day transport simulation. These results demonstrate for the first time that ASFV-like NCLDVs can retain viability in swine feed matrices during long-term transport across the continental United States.
Collapse
Affiliation(s)
- Amanda Palowski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Cecilia Balestreri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Pedro E. Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Jennifer L. G. van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Scott Dee
- Pipestone Applied Research, Pipestone Veterinary Services, Pipestone, MN, United States
| | | | - Haile F. Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, United States
| | - Gerald C. Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
10
|
Liu H, Meng F, Nyaruaba R, He P, Hong W, Jiang M, Liu D, Zhou W, Bai D, Yu J, Wei H. A triton X-100 assisted PMAxx-qPCR assay for rapid assessment of infectious African swine fever virus. Front Microbiol 2022; 13:1062544. [PMID: 36545208 PMCID: PMC9760672 DOI: 10.3389/fmicb.2022.1062544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction African Swine Fever (ASF) is a highly infectious disease of pigs, caused by African swine fever virus (ASFV). The lack of vaccines and drugs makes strict disinfection practices to be one of the main measurements to curb the transmission of ASF. Therefore, it is important to assess if all viruses are inactivated after disinfection or after long time exposure in their natural conditions. Currently, the infectivity of ASFV is determined by virus isolation and culture in a biosafety level 3 (BSL-3) laboratory. However, BSL-3 laboratories are not readily available, need skilled expertise and may be time consuming. Methods In this study, a Triton X-100 assisted PMAxx-qPCR method was developed for rapid assessment of infectious ASFV in samples. PMAxx, an improved version of propidium monoazide (PMA), can covalently cross-link with naked ASFV-DNA or DNA inside inactivated ASFV virions under assistance of 0.1% (v/v) TritonX-100, but not with ASFV-DNA inside live virions. Formation of PMAxx-DNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, the limit of detection of the PMAxx-qPCR assay was 2.32log10HAD50/mL of infectious ASFV. Testing different samples showed that the PMAxx-qPCR assay was effective to evaluate intact ASFV virions after treatment by heat or chemical disinfectants and in simulated samples such as swine tissue homogenate, swine saliva swabs, and environmental swabs. However, whole-blood and saliva need to be diluted before testing because they may inhibit the PCR reaction or the cross-linking of PMAxx with DNA. Conclusion The Triton X-100 assisted PMAxx-qPCR assay took less than 3 h from sample to result, offering an easier and faster way for assessing infectious ASFV in samples from places like pig farms and pork markets.
Collapse
Affiliation(s)
- Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Meng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Dongqing Liu
- Comprehensive Agricultural Law Enforcement Bureau, Wuhan, China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Bai
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,*Correspondence: Junping Yu,
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,Hongping Wei,
| |
Collapse
|
11
|
Nyaruaba R, Mwaliko C, Dobnik D, Neužil P, Amoth P, Mwau M, Yu J, Yang H, Wei H. Digital PCR Applications in the SARS-CoV-2/COVID-19 Era: a Roadmap for Future Outbreaks. Clin Microbiol Rev 2022; 35:e0016821. [PMID: 35258315 PMCID: PMC9491181 DOI: 10.1128/cmr.00168-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global public health disaster. The current gold standard for the diagnosis of infected patients is real-time reverse transcription-quantitative PCR (RT-qPCR). As effective as this method may be, it is subject to false-negative and -positive results, affecting its precision, especially for the detection of low viral loads in samples. In contrast, digital PCR (dPCR), the third generation of PCR, has been shown to be more effective than the gold standard, RT-qPCR, in detecting low viral loads in samples. In this review article, we selected publications to show the broad-spectrum applications of dPCR, including the development of assays and reference standards, environmental monitoring, mutation detection, and clinical diagnosis of SARS-CoV-2, while comparing it analytically to the gold standard, RT-qPCR. In summary, it is evident that the specificity, sensitivity, reproducibility, and detection limits of RT-dPCR are generally unaffected by common factors that may affect RT-qPCR. As this is the first time that dPCR is being tested in an outbreak of such a magnitude, knowledge of its applications will help chart a course for future diagnosis and monitoring of infectious disease outbreaks.
Collapse
Affiliation(s)
- Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Mwaliko
- International College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Pavel Neužil
- Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Patrick Amoth
- Ministry of Health, Government of Kenya, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
12
|
Rapid Quantification of Infectious Cucumber green mottle mosaic virus in Watermelon Tissues by PMA Coupled with RT-qPCR. Viruses 2022; 14:v14092046. [PMID: 36146852 PMCID: PMC9506375 DOI: 10.3390/v14092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is an important quarantine virus of cucurbit crops. Seedborne transmission is one of the principal modes for CGMMV spread, and effective early detection is helpful to prevent the occurrence of the disease. Quantitative real-time reverse-transcription PCR (RT-qPCR) is a sensitive and rapid method for detecting CGMMV nucleic acids, but it cannot distinguish between infectious and noninfectious viruses. In the present work, a propidium monoazide (PMA) assisted RT-qPCR method (PMA-RT-qPCR) was developed to rapidly distinguish infectious and inactive CGMMV. PMA is a photoactive dye that can selectively react with viral RNA released or inside inactive CGMMV virions but not viral RNA inside active virions. The formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be amplified. The primer pair cp3-1F/cp3-1R was designed based on the coat protein (cp) gene for specific amplification of CGMMV RNA by RT-qPCR. The detection limit of the RT-qPCR assay was 1.57 × 102 copies·μL−1. PMA at 120 μmol·L−1 was suitable for the selective quantification of infectious CGMMV virions. Under optimal conditions, RT-qPCR detection of heat-inactivated CGMMV resulted in Ct value differences larger than 16 between PMA-treated and non-PMA-treated groups, while Ct differences less than 0.23 were observed in the detection of infectious CGMMV. For naturally contaminated watermelon leaf, fruit and seedlot samples, infectious CGMMV were quantified in 13 out of the 22 samples, with infestation levels of 102~105 copies·g−1. Application of this assay enabled the selective detection of infectious CGMMV and facilitated the monitoring of the viral pathogen in watermelon seeds and tissues, which could be useful for avoiding the potential risks of primary inoculum sources.
Collapse
|
13
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
14
|
Quantification of infectious Human mastadenovirus in environmental matrices using PMAxx-qPCR. Braz J Microbiol 2022; 53:1465-1471. [PMID: 35666431 PMCID: PMC9168632 DOI: 10.1007/s42770-022-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular methodologies providing data on viral concentration and infectivity have been successfully used in environmental virology, supporting quantitative risk assessment studies. The present study aimed to assess human mastadenovirus (HAdV) intact particles using a derivative of propidium monoazide associated with qPCR (PMAxx-qPCR) in aquatic matrices. Initially, different concentrations of PMAxx were evaluated to establish an optimal protocol for treating different naturally contaminated matrices, using 10 min incubation in the dark at 200 rpm at room temperature and 15 min of photoactivation in the PMA-Lite™ LED photolysis device. There was no significant reduction in the quantification of infectious HAdV with increasing concentration of PMAxx used (20 μM, 50 μM, and 100 μM), except for sewage samples. In this matrix, a reduction of 5.01 log of genomic copies (GC)/L was observed from the concentration of 50 μM and revealed 100% HAdV particles with damaged capsids. On the other hand, the mean reduction of 0.51 log in stool samples using the same concentration mentioned above demonstrated 83% of damaged particles eliminated in the stool. Following, 50 μM PMAxx-qPCR protocol revealed a log reduction of 0.91, 0.67, and 1.05 in other samples of raw sewage, brackish, and seawater where HAdV concentration reached 1.47 × 104, 6.81 × 102, and 2.33 × 102 GC/L, respectively. Fifty micrometers of PMAxx protocol helped screen intact viruses from different matrices, including sea and brackish water.
Collapse
|
15
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Monteiro S, Rente D, Cunha MV, Marques TA, Cardoso E, Vilaça J, Coelho N, Brôco N, Carvalho M, Santos R. Discrimination and surveillance of infectious severe acute respiratory syndrome Coronavirus 2 in wastewater using cell culture and RT-qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152914. [PMID: 34999067 PMCID: PMC8733236 DOI: 10.1016/j.scitotenv.2022.152914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 05/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has been extensively detected in raw wastewater in studies exploring wastewater-based epidemiology (WBE) for early warning purposes. Nonetheless, only a few limited studies investigated the presence of SARS-CoV-2 in treated wastewaters to determine the potential health risks across the water cycle. The detection of SARS-CoV-2 has been done mostly by RT-qPCR and ddPCR, which only provides information on the presence of nucleic acids rather than information on potential infectivity. In this study, we set to develop and evaluate the use of viability RT-qPCR for the selective discrimination and surveillance of infectious SARS-CoV-2 in secondary-treated wastewater. Enzymatic (nuclease) and viability dye (Reagent D) pretreatments were applied to infer infectivity through RT-qPCR using porcine epidemic diarrhea virus (PEDV) as a CoV surrogate. Infectivity tests were first performed on PEDV purified RNA, then on infectious and heat-inactivated PEDV, and finally on heat inactivated PEDV spiked in concentrated secondary-treated wastewater. The two viability RT-qPCR methods were then applied to 27 secondary-treated wastewater samples positive for SARS-CoV-2 RNA at the outlet of five large urban wastewater treatment plants in Portugal. Reagent D pretreatment showed similar behavior to cell culture for heat-inactivated PEDV and both viability RT-qPCR methods performed comparably to VERO E6 cell culture for SARS-CoV-2 present in secondary-treated wastewater, eliminating completely the RT-qPCR signal. Our study demonstrated the lack of infectious SARS-CoV-2 viral particles on secondary-treated wastewater through the application of two pretreatment methods for the rapid inference of infectivity through RT-qPCR, showing their potential application in environmental screening. This study addressed a knowledge gap on the public health risks of SARS-CoV-2 across the water cycle.
Collapse
Affiliation(s)
- Silvia Monteiro
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal.
| | - Daniela Rente
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Tiago A Marques
- Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews KY16 9LZ, Scotland; Centro de Estatística e Aplicações, Departamento de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugénia Cardoso
- Águas do Tejo Atlântico, Fábrica de Águas de Alcântara, Avenida de Ceuta, 1300-254 Lisboa, Portugal
| | - João Vilaça
- SIMDOURO, ETAR de Gaia Litoral, 4400-356 Canidelo, Portugal
| | | | - Nuno Brôco
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421 Lisboa, Portugal
| | - Marta Carvalho
- AdP VALOR, Serviços Ambientais, S.A., Rua Visconde de Seabra, 3, 1700-421 Lisboa, Portugal
| | - Ricardo Santos
- Laboratorio de Análises, Tecnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Bäuerl C, Randazzo W, Sánchez G, Selma-Royo M, García Verdevio E, Martínez L, Parra-Llorca A, Lerin C, Fumadó V, Crovetto F, Crispi F, Pérez-Cano FJ, Rodríguez G, Ruiz-Redondo G, Campoy C, Martínez-Costa C, Collado MC. SARS-CoV-2 RNA and antibody detection in breast milk from a prospective multicentre study in Spain. Arch Dis Child Fetal Neonatal Ed 2022; 107:216-221. [PMID: 34417223 DOI: 10.1101/2021.05.06.21256766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/12/2021] [Indexed: 05/21/2023]
Abstract
OBJECTIVES To develop and validate a specific protocol for SARS-CoV-2 detection in breast milk matrix and to determine the impact of maternal SARS-CoV-2 infection on the presence, concentration and persistence of specific SARS-CoV-2 antibodies. DESIGN AND PATIENTS This is a prospective, multicentre longitudinal study (April-December 2020) in 60 mothers with SARS-CoV-2 infection and/or who have recovered from COVID-19. A control group of 13 women before the pandemic were also included. SETTING Seven health centres from different provinces in Spain. MAIN OUTCOME MEASURES Presence of SARS-CoV-2 RNA in breast milk, targeting the N1 region of the nucleocapsid gene and the envelope (E) gene; presence and levels of SARS-CoV-2-specific immunoglobulins (Igs)-IgA, IgG and IgM-in breast milk samples from patients with COVID-19. RESULTS All breast milk samples showed negative results for presence of SARS-CoV-2 RNA. We observed high intraindividual and interindividual variability in the antibody response to the receptor-binding domain of the SARS-CoV-2 spike protein for each of the three isotypes IgA, IgM and IgG. Main Protease (MPro) domain antibodies were also detected in milk. 82.9% (58 of 70) of milk samples were positive for at least one of the three antibody isotypes, with 52.9% of these positive for all three Igs. Positivity rate for IgA was relatively stable over time (65.2%-87.5%), whereas it raised continuously for IgG (from 47.8% for the first 10 days to 87.5% from day 41 up to day 206 post-PCR confirmation). CONCLUSIONS Our study confirms the safety of breast feeding and highlights the relevance of virus-specific SARS-CoV-2 antibody transfer. This study provides crucial data to support official breastfeeding recommendations based on scientific evidence. Trial registration number NCT04768244.
Collapse
Affiliation(s)
- Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Elia García Verdevio
- Department of Gynecology and Obstetrics, Hospital Universitario Dr Peset, Valencia, Spain
| | - Laura Martínez
- Department of Paediatrics, Hospital Clínico Universitario de Valencia, Nutrition Research Group of INCLIVA, Valencia, Spain
| | - Anna Parra-Llorca
- Health Research Institute La Fe, Neonatal Research Group and University and Polytechnic Hospital La Fe, Division of Neonatology, Valencia, Spain
| | - Carles Lerin
- Department of Endocrinology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Victoria Fumadó
- Department of Infectious and Imported Diseases, Paediatric Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, CIBERER, Barcelona, Spain
| | - Fatima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, CIBERER, Barcelona, Spain
| | - Francisco J Pérez-Cano
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Gerardo Rodríguez
- University of Zaragoza, Hospital Clínico Universitario Lozano Blesa, Zaragoza. Instituto de Investigación Sanitaria Aragón (IIS Aragón), Red de Salud Materno Infantil y del Desarrollo (SAMID), Zaragoza, Spain
| | - Gemma Ruiz-Redondo
- Department of Gynecology and Obstetrics, University Hospital Clinic "San Cecilio" - Health Sciences Technological Park (PTS), Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, University of Granada, Granada, Spain
| | - Cecilia Martínez-Costa
- Department of Paediatrics, Hospital Clínico Universitario de Valencia, Nutrition Research Group of INCLIVA, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| |
Collapse
|
18
|
Owen L, Shivkumar M, Cross RBM, Laird K. Porous surfaces: stability and recovery of coronaviruses. Interface Focus 2022; 12:20210039. [PMID: 34956608 PMCID: PMC8662390 DOI: 10.1098/rsfs.2021.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The role of indirect contact in the transmission of SARS-CoV-2 is not clear. SARS-CoV-2 persists on dry surfaces for hours to days; published studies have largely focused on hard surfaces with less research being conducted on different porous surfaces, such as textiles. Understanding the potential risks of indirect transmission of COVID-19 is useful for settings where there is close contact with textiles, including healthcare, manufacturing and retail environments. This article aims to review current research on porous surfaces in relation to their potential as fomites of coronaviruses compared to non-porous surfaces. Current methodologies for assessing the stability and recovery of coronaviruses from surfaces are also explored. Coronaviruses are often less stable on porous surfaces than non-porous surfaces, for example, SARS-CoV-2 persists for 0.5 h-5 days on paper and 3-21 days on plastic; however, stability is dependent on the type of surface. In particular, the surface properties of textiles differ widely depending on their construction, leading to variation in the stability of coronaviruses, with longer persistence on more hydrophobic materials such as polyester (1-3 days) compared to highly absorbent cotton (2 h-4 days). These findings should be considered where there is close contact with potentially contaminated textiles.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Maitreyi Shivkumar
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Richard B. M. Cross
- Emerging Technologies Research Centre, School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK
| | - Katie Laird
- Infectious Disease Research Group, The Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
19
|
Cuevas-Ferrando E, Girón-Guzmán I, Falcó I, Pérez-Cataluña A, Díaz-Reolid A, Aznar R, Randazzo W, Sánchez G. Discrimination of non-infectious SARS-CoV-2 particles from fomites by viability RT-qPCR. ENVIRONMENTAL RESEARCH 2022; 203:111831. [PMID: 34352235 PMCID: PMC8327643 DOI: 10.1016/j.envres.2021.111831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 05/05/2023]
Abstract
The ongoing coronavirus 2019 (COVID-19) pandemic constitutes a concerning global threat to public health and economy. In the midst of this pandemic scenario, the role of environment-to-human COVID-19 spread is still a matter of debate because mixed results have been reported concerning SARS-CoV-2 stability on high-touch surfaces in real-life scenarios. Up to now, no alternative and accessible procedures for cell culture have been applied to evaluate SARS-CoV-2 infectivity on fomites. Several strategies based on viral capsid integrity have latterly been developed using viability markers to selectively remove false-positive qPCR signals resulting from free nucleic acids and damaged viruses. These have finally allowed an estimation of viral infectivity. The present study aims to provide a rapid molecular-based protocol for detection and quantification of viable SARS-CoV-2 from fomites based on the discrimination of non-infectious SARS-CoV-2 particles by platinum chloride (IV) (PtCl4) viability RT-qPCR. An initial assessment compared two different swabbing procedures to recover inactivated SARS-CoV-2 particles from fomites coupled with two RNA extraction methods. Procedures were validated with human (E229) and porcine (PEDV) coronavirus surrogates, and compared with inactivated SARS-CoV-2 suspensions on glass, steel and plastic surfaces. The viability RT-qPCR efficiently removed the PCR amplification signals from heat and gamma-irradiated inactivated SARS-CoV-2 suspensions that had been collected from specified surfaces. This study proposes a rapid viability RT-qPCR that discriminates non-infectious SARS-CoV-2 particles on surfaces thus helping researchers to better understand the risk of contracting COVID-19 through contact with fomites and to develop more efficient epidemiological measures.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rosa Aznar
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
20
|
Cechova M, Beinhauerova M, Babak V, Slana I, Kralik P. A Novel Approach to the Viability Determination of Mycobacterium avium subsp. paratuberculosis Using Platinum Compounds in Combination With Quantitative PCR. Front Microbiol 2021; 12:748337. [PMID: 34899636 PMCID: PMC8652053 DOI: 10.3389/fmicb.2021.748337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/22/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) represents a slow-growing bacterium causing paratuberculosis, especially in domestic and wild ruminants. Until recently, the assessment of MAP viability relied mainly on cultivation, which is very time consuming and is unable to detect viable but non-culturable cells. Subsequently, viability PCR, a method combining sample treatment with the DNA-modifying agent ethidium monoazide (EMA) or propidium monoazide (PMA) and quantitative PCR (qPCR), was developed, enabling the selective detection of MAP cells with an intact cell membrane. However, this technology requires a laborious procedure involving the need to work in the dark and on ice. In our study, a method based on a combination of platinum compound treatment and qPCR, which does not require such a demanding procedure, was investigated to determine mycobacterial cell viability. The conditions of platinum compound treatment were optimized for the fast-growing mycobacterium M. smegmatis using live and heat-killed cells. The optimal conditions consisting of a single treatment with 100 μM cis-dichlorodiammine platinum(II) for 60 min at 5°C resulted in a difference in quantification cycle (Cq) values between live and dead membrane-compromised mycobacterial cells of about 6 Cq corresponding to about 2 log10 units. This optimized viability assay was eventually applied to MAP cells and demonstrated a better ability to distinguish between live and heat-killed mycobacteria as compared to PMA. The viability assay combining the Pt treatment with qPCR thereby proved to be a promising method for the enumeration of viable MAP cells in foodstuffs, environmental, and clinical samples which could replace the time-consuming cultivation or laborious procedures required when using PMA.
Collapse
Affiliation(s)
- Martina Cechova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Beinhauerova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vladimir Babak
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Iva Slana
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Petr Kralik
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| |
Collapse
|
21
|
Hong W, Xiong J, Nyaruaba R, Li J, Muturi E, Liu H, Yu J, Yang H, Wei H. Rapid determination of infectious SARS-CoV-2 in PCR-positive samples by SDS-PMA assisted RT-qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149085. [PMID: 34293609 PMCID: PMC8285242 DOI: 10.1016/j.scitotenv.2021.149085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
The ongoing COVID-19 pandemic has generated a global health crisis that needs well management of not only patients but also environments to reduce SARS-CoV-2 transmission. The gold standard RT-qPCR method is sensitive and rapid to detect SARS-CoV-2 nucleic acid, but does not answer if PCR-positive samples contain infectious virions. To circumvent this problem, we report an SDS-propidium monoazide (PMA) assisted RT-qPCR method that enables rapid discrimination of live and dead SARS-CoV-2 within 3 h. PMA, a photo-reactive dye, can react with viral RNA released or inside inactivated SARS-CoV-2 virions under assistance of 0.005% SDS, but not viral RNA inside live virions. Formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, RT-qPCR detection of heat-inactivated SARS-CoV-2 resulted in larger than 9 Ct value differences between PMA-treated and PMA-free groups, while less than 0.5 Ct differences were observed in the detection of infectious SARS-CoV-2 ranging from 20 to 5148 viral particles. Using a cutoff Ct difference of 8.6, this method could differentiate as low as 8 PFU live viruses in the mixtures of live and heat-inactivated virions. Further experiments showed that this method could successfully monitor the natural inactivation process of SARS-CoV-2 on plastic surfaces during storage with comparable results to the gold standard plaque assay. We believe that the culture-free method established here could be used for rapid and convenient determination of infectious SARS-CoV-2 virions in PCR-positive samples, which will facilitate better control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Wei Hong
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Xiong
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Elishiba Muturi
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Liu
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Yu
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongping Wei
- CAS Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Falcó I, Randazzo W, Sánchez G, Vilarroig J, Climent J, Chiva S, Chica A, Navarro-Laboulais J. Experimental and CFD evaluation of ozone efficacy against coronavirus and enteric virus contamination on public transport surfaces. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106217. [PMID: 34422551 PMCID: PMC8367738 DOI: 10.1016/j.jece.2021.106217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 05/16/2023]
Abstract
The limited information about the routes of the transmission of SARS-CoV-2 within the ongoing pandemic scenario mobilized the administration, industry and academy to develop sanitation and disinfection systems for public and private spaces. Ozone has been proposed as an effective disinfection method against enveloped and non-enveloped viruses, including viruses with similar morphology to SARS-CoV-2. Due to this efficacy, numerous gaseous and aqueous phase ozone applications have emerged potentially to inhibit virus persistence in aerosols, surfaces, and water. In this work, a numerical model, a RANS CFD model for ozone dispersion inside tram and underground coach has been developed including the chemical self-decomposition and surface reactions of the ozone. The CFD model has been developed for a real tram coach of 28.6 × 2.4 × 2.2 m (L × W × H) using 1.76 million nodes and the Menter's shear stress transport turbulence model. The model predicts the O3 concentration needed to meet disinfection criteria and the fluid dynamics inside the public transport coach. The effectiveness of the system has been validated with laboratory and field tests in real full-scale coach using porcine epidemic diarrhea virus (PEDV) and murine norovirus (MNV-1) as SARS-CoV-2 and human norovirus surrogates, respectively. Lab-scale experiments on plastic surfaces demonstrated O3 disinfection (100 ppm, 95% RH, 25 min) inactivate > 99.8% MNV-1 and PEDV. Additionally, field tests in real full-scale coach demostrate the efficacy of the system as > 98.6% of infectious MNV-1 and > 96.3% PEDV were inactivated.
Collapse
Affiliation(s)
- Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Jose Vilarroig
- Hydrodynamic and Environmental Services, Av. del Mar, 53, 12003 Castellón, Spain
| | - Javier Climent
- Hydrodynamic and Environmental Services, Av. del Mar, 53, 12003 Castellón, Spain
| | - Sergio Chiva
- Universitat Jaume I, Department of Mechanical Engineering and Construction, Av. Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| | - A Chica
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de Los Naranjos s/n, 46022 Valencia, Spain
| | - J Navarro-Laboulais
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
23
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 PMCID: PMC8438079 DOI: 10.1038/s41598-021-97700-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
24
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 DOI: 10.1101/2021.03.22.21253818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
25
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 DOI: 10.1101/2020.12.19.20248508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/21/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
26
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 PMCID: PMC8060898 DOI: 10.1016/j.watres.2021.117183] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
27
|
Shurson GC, Palowski A, van de Ligt JLG, Schroeder DC, Balestreri C, Urriola PE, Sampedro F. New perspectives for evaluating relative risks of African swine fever virus contamination in global feed ingredient supply chains. Transbound Emerg Dis 2021; 69:31-56. [PMID: 34076354 DOI: 10.1111/tbed.14174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
There are no published reports indicating that the African swine fever virus (ASFV) has been detected in feed ingredients or complete feed. This is primarily because there are only a few laboratories in the world that have the biosecurity and analytical capabilities of detecting ASFV in feed. Several in vitro studies have been conducted to evaluate ASFV concentration, viability and inactivation when ASFV was added to various feed ingredients and complete feed. These inoculation studies have shown that some feed matrices support virus survival longer than others and the reasons for this are unknown. Current analytical methodologies have significant limitations in sensitivity, repeatability, ability to detect viable virus particles and association with infectivity. As a result, interpretation of findings using various measures may lead to misleading conclusions. Because of analytical and technical challenges, as well as the lack of ASFV contamination data in feed supply chains, quantitative risk assessments have not been conducted. A few qualitative risk assessments have been conducted, but they have not considered differences in potential scenarios for ASFV contamination between various types of feed ingredient supply chains. Therefore, the purpose of this review is to provide a more holistic understanding of the relative potential risks of ASFV contamination in various global feed ingredient supply chains and provide recommendations for addressing the challenges identified.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Amanda Palowski
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Cecilia Balestreri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Cuevas-Ferrando E, Pérez-Cataluña A, Allende A, Guix S, Randazzo W, Sánchez G. Recovering coronavirus from large volumes of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143101. [PMID: 33268258 DOI: 10.1016/jscitontenv.2020.143101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 05/28/2023]
Abstract
The need for monitoring tools to better control the ongoing coronavirus disease (COVID-19) pandemic is extremely urgent and the contamination of water resources by excreted viral particles poses alarming questions to be answered. As a first step to overcome technical limitations in monitoring SARS-CoV-2 along the water cycle, we assessed the analytical performance of a dead end hollow fiber ultrafiltration coupled to different options for secondary concentrations to concentrate viral particles from large volume of spiked tap water, seawater and surface water together with two quantitative RT-qPCR detection kits. Spiking the porcine epidemic diarrhea virus (PEDV), an enveloped virus surrogate for SARS-CoV-2, together with the mengovirus, we demonstrated that PEG-precipitation and SENS-kit better recovered PEDV (13.10 ± 0.66%) from tap water, while centrifugal filtration resulted the best option to recover mengovirus regardless of the detection kit used. No statistical significant differences were found when comparing high (10,000 ×g) and low (3500 ×g) centrifugation speeds for the secondary PEG- based concentration of spiked seawater, while considerable inhibition was observed for both viruses detected by NoInh-kit assay. Similarly, the co-concentration of PCR inhibitors and viral particles was observed in surface waters detected with either SENS-kit or NoInh-kit and RNA dilution was needed to achieve acceptable recoveries at the expenses of the overall sensitivity of the method. These methodologies represent suitable options to investigate SARS-CoV-2 occurrence in different water resources and allow to conduct on site sampling of large volume of water.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Susana Guix
- Enteric Virus laboratory, Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
29
|
Cuevas-Ferrando E, Pérez-Cataluña A, Allende A, Guix S, Randazzo W, Sánchez G. Recovering coronavirus from large volumes of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143101. [PMID: 33268258 PMCID: PMC7563921 DOI: 10.1016/j.scitotenv.2020.143101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 05/18/2023]
Abstract
The need for monitoring tools to better control the ongoing coronavirus disease (COVID-19) pandemic is extremely urgent and the contamination of water resources by excreted viral particles poses alarming questions to be answered. As a first step to overcome technical limitations in monitoring SARS-CoV-2 along the water cycle, we assessed the analytical performance of a dead end hollow fiber ultrafiltration coupled to different options for secondary concentrations to concentrate viral particles from large volume of spiked tap water, seawater and surface water together with two quantitative RT-qPCR detection kits. Spiking the porcine epidemic diarrhea virus (PEDV), an enveloped virus surrogate for SARS-CoV-2, together with the mengovirus, we demonstrated that PEG-precipitation and SENS-kit better recovered PEDV (13.10 ± 0.66%) from tap water, while centrifugal filtration resulted the best option to recover mengovirus regardless of the detection kit used. No statistical significant differences were found when comparing high (10,000 ×g) and low (3500 ×g) centrifugation speeds for the secondary PEG- based concentration of spiked seawater, while considerable inhibition was observed for both viruses detected by NoInh-kit assay. Similarly, the co-concentration of PCR inhibitors and viral particles was observed in surface waters detected with either SENS-kit or NoInh-kit and RNA dilution was needed to achieve acceptable recoveries at the expenses of the overall sensitivity of the method. These methodologies represent suitable options to investigate SARS-CoV-2 occurrence in different water resources and allow to conduct on site sampling of large volume of water.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Susana Guix
- Enteric Virus laboratory, Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
30
|
Pérez-Cataluña A, Cuevas-Ferrando E, Randazzo W, Falcó I, Allende A, Sánchez G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143870. [PMID: 33338788 PMCID: PMC7722604 DOI: 10.1016/j.scitotenv.2020.143870] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated. Urban wastewater seeded with gamma-irradiated SARS-CoV-2, porcine epidemic diarrhea virus (PEDV), and mengovirus (MgV) was used to test the concentration efficiency of an aluminum-based adsorption-precipitation method and a polyethylene glycol (PEG) precipitation protocol. Moreover, two different RNA extraction methods were compared in this study: a commercial manual spin column centrifugation kit and an automated protocol based on magnetic silica beads. Overall, the evaluated concentration methods did not impact the recovery of gamma-irradiated SARS-CoV-2 nor MgV, while extraction methods showed significant differences for PEDV. Mean recovery rates of 42.9 ± 9.5%, 27.5 ± 14.3% and 9.0 ± 2.2% were obtained for gamma-irradiated SARS-CoV-2, PEDV and MgV, respectively. Limits of detection (LoD95%) for five genomic SARS-CoV-2 targets (N1, N2, gene E, IP2 and IP4) ranged from 1.56 log genome equivalents (ge)/mL (N1) to 2.22 log ge/mL (IP4) when automated system was used; while values ranging between 2.08 (N1) and 2.34 (E) log ge/mL were observed when using column-based extraction method. Different targets were also evaluated in naturally contaminated wastewater samples with 91.2%, 85.3%, 70.6%, 79.4% and 73.5% positivity, for N1, N2, E, IP2 and IP4, respectively. Our benchmarked comparison study suggests that the aluminum precipitation method coupled with the automated nucleic extraction represents a method of acceptable sensitivity to provide readily results of interest for SARS-CoV-2 WBE surveillance.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|