1
|
Choudhury PK, Jena R, Puniya AK, Tomar SK. Isolation and characterization of reductive acetogens from rumen fluid samples of Murrah buffaloes. 3 Biotech 2023; 13:265. [PMID: 37415727 PMCID: PMC10319699 DOI: 10.1007/s13205-023-03688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
In the present study, attempts have been made to isolate reductive acetogens from the rumen fluid samples of Murrah buffaloes (Bubalus bubalis). Out of 32 rumen samples 51 isolates were isolated, and based on autotrophic growth for production of acetate and presence of formyltetrahydrofolate synthetase gene (FTHFS) 12 isolates were confirmed as reductive acetogens. Microscopic observations showed that ten isolates as Gram-positive rods (ACB28, ACB29, ACB66, ACB73, ACB81, ACB91, ACB133, ACB229, ACB52, ACB95) and two isolates as Gram-positive cocci (ACB19, ACB89). All isolates tested negative for catalase, oxidase, and gelatin liquefaction, whereas the production of H2S was detected for two (ACB52 and ACB95) of the above isolates. All these isolates showed autotrophic growth from H2 and CO2, and heterotrophic growth with different fermentable sugars, viz., d-glucose, D-fructose, and D-trehalose but failed to grow on salicin, raffinose, and l-rhamnose. Out of the isolates, two showed amylase activity (ACB28 and ACB95), five showed CMCase activity (ACB19, ACB28, ACB29, ACB73 and ACB91), three showed pectinase activity (ACB29, ACB52 and ACB89), whereas none of the isolates was found positive for avicellase and xylanase activity. Based on 16S rDNA gene sequence analysis, the isolates showed their phylogenetic relationship with maximum similarity up to 99% to different strains of earlier reported known acetogens of clostridia group including Clostridium sp. (6), Eubacterium limosum (1), Ruminococcus sp. (1) and Acetobacterium woodii (1) except one, i.e., Vagococcus fluvialis. The results indicate that reductive acetogens isolated from the rumen fluid samples of Murrah buffalos are both autotrophic and heterotrophic in nature and further investigations are required to exploit and explore their potential as an alternate hydrogen sink.
Collapse
Affiliation(s)
- Prasanta Kumar Choudhury
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha 761211 India
| | - Rajashree Jena
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha 761211 India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
2
|
Eliasson KA, Singh A, Isaksson S, Schnürer A. Co-substrate composition is critical for enrichment of functional key species and for process efficiency during biogas production from cattle manure. Microb Biotechnol 2022; 16:350-371. [PMID: 36507711 PMCID: PMC9871532 DOI: 10.1111/1751-7915.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon Isaksson
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
3
|
Muhorakeye A, Cayetano RD, Kumar AN, Park J, Pandey AK, Kim SH. Valorization of pretreated waste activated sludge to organic acids and biopolymer. CHEMOSPHERE 2022; 303:135078. [PMID: 35644235 DOI: 10.1016/j.chemosphere.2022.135078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester that may be made by utilizing volatile fatty acids (VFAs) as a substrate. VFA generated by continuous anaerobic fermentation of waste activated sludge (WAS) was fed into bioreactors for PHB synthesis in this work. Series of optimization tests were conducted to increase the biodegradability and hydrolysis of waste activated sludge. It was found out that 0.05 g/g TS of SDBS (sodium dodecylbenzene sulfonate), 70 °C (heat treatment) and 2hr (time) as pretreatment condition would give the highest solubilization. Impact of pH adjustment on the acidogenesis of pretreated WAS was evaluated in batch experiments at varying initial pH (4-10). The result indicated that when operational pH was between 7.5 and 8, the VFA yield was increased by 5.3-18.1%. Continuous acidogenic operation validated the SDBS pretreatment and pH adjustment warranted stable VFA conversion from WAS at a yield of 47% in COD basis. Firmicutes, Actinobacteria and Proteobacteria were affiliated as dominant bacterial phyla in the continuous acidogenesis. The effluent of the continuous acidogenesis was converted to biopolymer with the average yields of 0.23 g PHB-COD/g VFAadded-COD in the feast mode and 0.34 g PHB-COD/g VFAadded-COD in the famine mode. In feast and famine cycle, the average VFA utilization was 55% and 60% respectively. The sequential SDBS pretreatment, acidogenesis and PHB production would produce 162 g of PHB from 1 kg of WAS as COD basis.
Collapse
Affiliation(s)
- Alice Muhorakeye
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Roent Dune Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Singh A, Schnürer A. AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database (Oxford) 2022; 2022:6609150. [PMID: 35708586 PMCID: PMC9216588 DOI: 10.1093/database/baac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022]
Abstract
AcetoBase is a public repository and database of formyltetrahydrofolate synthetase (FTHFS) sequences. It is the first systematic collection of bacterial FTHFS nucleotide and protein sequences from genomes and metagenome-assembled genomes and of sequences generated by clone library sequencing. At its publication in 2019, AcetoBase (Version 1) was also the first database to establish connections between the FTHFS gene, the Wood–Ljungdahl pathway and 16S ribosomal RNA genes. Since the publication of AcetoBase, there have been significant improvements in the taxonomy of many bacterial lineages and accessibility/availability of public genomics and metagenomics data. The update to the AcetoBase reference database described here (Version 2) provides new sequence data and taxonomy, along with improvements in web functionality and user interface. The evaluation of this latest update by re-analysis of publicly accessible FTHFS amplicon sequencing data previously analysed with AcetoBase Version 1 revealed significant improvements in the taxonomic assignment of FTHFS sequences. Database URL: https://acetobase.molbio.slu.se
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| |
Collapse
|
5
|
Struckmann Poulsen J, de Jonge N, Vieira Macêdo W, Rask Dalby F, Feilberg A, Lund Nielsen J. Characterisation of cellulose-degrading organisms in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 351:126933. [PMID: 35247567 DOI: 10.1016/j.biortech.2022.126933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The recalcitrant nature of lignocellulosic biomass hinders efficient exploitation of this fraction for energy production. A better understanding of the microorganisms able to convert plant-based feedstocks is needed to improve anaerobic digestion of lignocellulosic biomass. In this study, active thermophilic cellulose-degrading microorganisms were identified from a full-scale anaerobic digester fed with maize by using metagenome-resolved protein stable isotope probing (protein-SIP). 13C-cellulose was converted into 13C-methane with a 13/12C isotope ratio of 0.127 after two days of incubation. Metagenomic analysis revealed 238 different genes coding for carbohydrate-active enzymes (CAZymes), six of which were directly associated with cellulose degradation. The protein-SIP analysis identified twenty heavily labelled peptides deriving from microorganisms actively assimilating labelled carbon from the degradation of 13C-cellulose, highlighting several members of the order Clostridiales. Corynebacterium was identified through CAZyme screening, amplicon analysis, and in the metagenome giving a strong identification of being a cellulose degrader.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
6
|
Fuentes L, Palomo-Briones R, de Jesús Montoya-Rosales J, Braga L, Castelló E, Vesga A, Tapia-Venegas E, Razo-Flores E, Ecthebehere C. Knowing the enemy: homoacetogens in hydrogen production reactors. Appl Microbiol Biotechnol 2021; 105:8989-9002. [PMID: 34716461 DOI: 10.1007/s00253-021-11656-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
One of the bottlenecks of the hydrogen production by dark fermentation is the low yields obtained because of the homoacetogenesis persistence, a metabolic pathway where H2 and CO2 are consumed to produce acetate. The central reactions of H2 production and homoacetogenesis are catalyzed by enzyme hydrogenase and the formyltetrahydrofolate synthetase, respectively. In this work, genes encoding for the formyltetrahydrofolate synthetase (fthfs) and hydrogenase (hydA) were used to investigate the diversity of homoacetogens as well as their phylogenetic relationships through quantitative PCR (qPCR) and next-generation amplicon sequencing. A total of 70 samples from 19 different H2-producing bioreactors with different configurations and operating conditions were analyzed. Quantification through qPCR showed that the abundance of fthfs and hydA was strongly associated with the type of substrate, organic loading rate, and H2 production performance. In particular, fthfs sequencing revealed that homoacetogens diversity was low with one or two dominant homoacetogens in each sample. Clostridium carboxivorans was detected in the reactors fed with agave hydrolisates; Acetobacterium woodii dominated in systems fed with glucose; Blautia coccoides and unclassified Sporoanaerobacter species were present in reactors fed with cheese whey; finally, Eubacterium limosum and Selenomonas sp. were co-dominant in reactors fed with glycerol. Altogether, quantification and sequencing analysis revealed that the occurrence of homoacetogenesis could take place due to (1) metabolic changes of H2-producing bacteria towards homoacetogenesis or (2) the displacement of H2-producing bacteria by homoacetogens. Overall, it was demonstrated that the fthfs gene was a suitable marker to investigate homoacetogens in H2-producing reactors. KEY POINTS: • qPCR and sequencing analysis revealed two homoacetogenesis phenomena. • fthfs gene was a suitable marker to investigate homoacetogens in H2 reactors.
Collapse
Affiliation(s)
- Laura Fuentes
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay
| | - Rodolfo Palomo-Briones
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - José de Jesús Montoya-Rosales
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Lucía Braga
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Elena Castelló
- Laboratorio Bioprocesos Ambientales, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de La República, Herrera Y Reissig, 565, Montevideo, Uruguay
| | - Alejandra Vesga
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2085, Valparaíso, Av. Brasil, Chile
| | - Estela Tapia-Venegas
- Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha Av, Leopoldo Carvallo 270, Valparaíso, Chile
| | - Elías Razo-Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica A.C, Camino a La Presa San José No, 2055, Col. Lomas 4a Sección, C.P., 78216, San Luis Potosí, SLP, México
| | - Claudia Ecthebehere
- Laboratorio de Ecología Microbiana, Departamento de Bioquímica Y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
7
|
Singh A, Moestedt J, Berg A, Schnürer A. Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Front Microbiol 2021; 12:700256. [PMID: 34484143 PMCID: PMC8415747 DOI: 10.3389/fmicb.2021.700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Moestedt
- Tekniska Verken i Linköping AB, Department R&D, Linköping, Sweden
| | | | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Singh A, Müller B, Schnürer A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP. Sci Rep 2021; 11:13298. [PMID: 34168213 PMCID: PMC8225771 DOI: 10.1038/s41598-021-92658-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Acetogens play a key role in anaerobic degradation of organic material and in maintaining biogas process efficiency. Profiling this community and its temporal changes can help evaluate process stability and function, especially under disturbance/stress conditions, and avoid complete process failure. The formyltetrahydrofolate synthetase (FTHFS) gene can be used as a marker for acetogenic community profiling in diverse environments. In this study, we developed a new high-throughput FTHFS gene sequencing method for acetogenic community profiling and compared it with conventional terminal restriction fragment length polymorphism of the FTHFS gene, 16S rRNA gene-based profiling of the whole bacterial community, and indirect analysis via 16S rRNA profiling of the FTHFS gene-harbouring community. Analyses and method comparisons were made using samples from two laboratory-scale biogas processes, one operated under stable control and one exposed to controlled overloading disturbance. Comparative analysis revealed satisfactory detection of the bacterial community and its changes for all methods, but with some differences in resolution and taxonomic identification. FTHFS gene sequencing was found to be the most suitable and reliable method to study acetogenic communities. These results pave the way for community profiling in various biogas processes and in other environments where the dynamics of acetogenic bacteria have not been well studied.
Collapse
Affiliation(s)
- Abhijeet Singh
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Bettina Müller
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|