1
|
Yang X, Li M, Wang H, Wang M, Liu Y, Xu W, Jiang T. SNORD45A Affects Content of HIF-1α and Promotes Endothelial Angiogenic Function. Appl Biochem Biotechnol 2024; 196:7185-7197. [PMID: 38489114 DOI: 10.1007/s12010-024-04916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
To find out the differentially expressed small nucleolar RNAs (snoRNAs) in corneal neovascularization and their effect on angiogenesis. The rat model of corneal neovascularization induced by alkali burn was established, and the differentially expressed snoRNAs were sifted by high-throughput sequencing. Human genome homologs were screened and verified in cytopathological models. Polymerase chain reactions (PCRs) and Western blot assays were applied to detect mRNA and corresponding proteins affected by the differentially expressed snoRNA. In vitro, experiments were promoted to identify whether snoRNA affects endothelial cell migration and angiogenesis. Forty-seven differentially expressed snoRNAs were sifted from transparent cornea and neovascularization. According to sequencing and cytopathological model results, SNORD45A was selected for subsequent experiments. At mRNA and protein levels, SNORD45A affected the expression of HIF-1α. SNORD45A promoted endothelial angiogenesis through endothelial cell migration and tube formation regulation. The research suggested that SNORD45A partakes in the corneal neovascularization formation and can become one of the targets for corneal neovascularization therapy.
Collapse
Affiliation(s)
- Xi Yang
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China
| | - Meng Li
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Hongqiao Wang
- Department of Blood Purification, Hiser Medical Center of Qingdao, No.4, Renmin Road, Qingdao, 266034, Shandong province, China
| | - Mengyuan Wang
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Yiming Liu
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Wenhua Xu
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China.
- Institute of Regenerative Medicine and Laboratory Innovation, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China.
| | - Tao Jiang
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China.
| |
Collapse
|
2
|
Jeon H, Sterpi M, Mo C, Bteich F. Claudins: from gatekeepers of epithelial integrity to potential targets in hepato-pancreato-biliary cancers. Front Oncol 2024; 14:1454882. [PMID: 39391254 PMCID: PMC11464258 DOI: 10.3389/fonc.2024.1454882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Claudins, a family of tetraspan transmembrane proteins, are critical to the integrity of tight junctions in epithelia and endothelia, influencing cellular processes such as development, differentiation, and apoptosis. Abnormal claudin expression is associated with various malignancies, particularly affecting tissue architecture and potentially facilitating tumor invasion and metastasis. In this comprehensive review, we explore the multifaceted functions of claudins: their expression, specific roles in cancer with a focus on hepato-pancreato-biliary malignancies and highlight their potential as therapeutic targets. We discuss current claudin-targeted therapies, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engager and chimeric antigen receptor T-cell therapies. These approaches show promise in pre-clinical and clinical studies, particularly in hepato-pancreato-biliary cancers with large unmet needs. Despite these early signs of efficacy, challenges remain in effectively targeting these proteins due to their structural resemblance and overlapping functions.
Collapse
Affiliation(s)
- Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
3
|
Liang Y, Zhang J, Luo D, Cheng L, Wang Y. Deregulation of immune response contributing to fulminant hepatitis in HEV infected pregnant women. J Med Virol 2024; 96:e29639. [PMID: 38708824 DOI: 10.1002/jmv.29639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Hepatitis E virus (HEV) infection in pregnant women is associated with a wide spectrum of adverse consequences for both mother and fetus. The high mortality in this population appears to be associated with hormonal changes and consequent immunological changes. This study conducted an analysis of immune responses in pregnant women infected with HEV manifesting varying severity. Data mining analysis of the GSE79197 was utilized to examine differentially biological functions in pregnant women with HEV infection (P-HEV) versus without HEV infection (P-nHEV), P-HEV progressing to ALF (P-ALF) versus P-HEV, and P-HEV versus non-pregnant women with HEV infection (nP-HEV). We found cellular response to interleukin and immune response-regulating signalings were activated in P-HEV compared with P-nHEV. However, there was a significant decrease of immune responses, such as T cell activation, leukocyte cell-cell adhesion, regulation of lymphocyte activation, and immune response-regulating signaling pathway in P-ALF patient than P-HEV patient. Compared with nP-HEV, MHC protein complex binding function was inhibited in P-HEV. Further microRNA enrichment analysis showed that MAPK and T cell receptor signaling pathways were inhibited in P-HEV compared with nP-HEV. In summary, immune responses were activated during HEV infection while being suppressed when developing ALF during pregnancy, heightening the importance of immune mediation in the pathogenesis of severe outcome in HEV infected pregnant women.
Collapse
Affiliation(s)
- Yining Liang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Jiayue Zhang
- School of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Lixin Cheng
- School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Liu G, Pei M, Wang S, Qiu Z, Li X, Ma H, Ma Y, Wang J, Qiao Z, Ma Z, Liu Z. Transcriptional Analysis of lncRNA and Target Genes Induced by Influenza A Virus Infection in MDCK Cells. Vaccines (Basel) 2023; 11:1593. [PMID: 37896995 PMCID: PMC10610897 DOI: 10.3390/vaccines11101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The MDCK cell line is the primary cell line used for influenza vaccine production. Using genetic engineering technology to change the expression and activity of genes that regulate virus proliferation to obtain high-yield vaccine cell lines has attracted increasing attention. A comprehensive understanding of the key genes, targets, and molecular mechanisms of viral regulation in cells is critical to achieving this goal, yet the post-transcriptional regulation mechanism involved in virus proliferation-particularly the effect of lncRNA on influenza virus proliferation-is still poorly understood. Therefore, this study used high-throughput RNA-seq technology to identify H1N1 infection-induced lncRNA and mRNA expression changes in MDCK cells and explore the regulatory relationship between these crucial lncRNAs and their target genes. RESULTS In response to H1N1 infection in MDCK cells 16 h post-infection (hpi) relative to uninfected controls, we used multiple gene function annotation databases and initially identified 31,501 significantly differentially expressed (DE) genes and 39,920 DE lncRNAs (|log2FC| > 1, p < 0.05). Among these, 102 lncRNAs and 577 mRNAs exhibited predicted correlations with viral response mechanisms. Based on the magnitude of significant expression differences, related research, and RT-qPCR expression validation at the transcriptional level, we further focused on 18 DE mRNAs and 32 DE lncRNAs. Among these, the differential expression of the genes RSAD2, CLDN1, HCLS1, and IFIT5 in response to influenza virus infection was further verified at the protein level using Western blot technology, which showed results consistent with the RNA-seq and RT-qPCR findings. We then developed a potential molecular regulatory network between these four genes and their six predicted lncRNAs. CONCLUSIONS The results of this study will contribute to a more comprehensive understanding of the molecular mechanism of host cell non-coding RNA-mediated regulation of influenza virus replication. These results may also identify methods for screening target genes in the development of genetically engineered cell lines capable of high-yield artificial vaccine production.
Collapse
Affiliation(s)
- Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Mengyuan Pei
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Hua Ma
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou 730010, China; (H.M.); (Y.M.)
| | - Yumei Ma
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou 730010, China; (H.M.); (Y.M.)
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Lanzhou 730030, China; (G.L.); (M.P.); (S.W.); (Z.Q.); (X.L.); (J.W.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
6
|
Smatti MK, Al-Sarraj YA, Albagha O, Yassine HM. Genome-wide association study identifies several loci for HEV seropositivity. iScience 2023; 26:107586. [PMID: 37664632 PMCID: PMC10470371 DOI: 10.1016/j.isci.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Hepatitis E viral (HEV) infection imposes a heavy global health burden. The variability in the prevalence of serological markers of HEV infection between different ethnic groups proposes a host genetic influence. Here, we report genetic polymorphisms associated with anti-HEV antibody positivity and level using binary- and quantitative-trait genome-wide association studies (GWAS) on a population from Qatar (n = 5829). We identified a region in 12p11.1 (lead SNP: rs559856097, allele: A, p = 2.3 × 10-10) significantly associated with anti-HEV antibodies level. This intergenic variant is located near SNORD112, a small nucleolar RNA (snoRNA). Additional gene-set and pathway enrichment analyses highlighted a strong correlation with anti-viral response-related pathways, including IFNs (alpha/beta) and interleukin-21 (IL-21) signaling. This is the first GWAS on the response to HEV infection. Further replication and functional experimentation are warranted to validate these findings.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Yasser A. Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
Liu YY, Bai JS, Liu CC, Zhou JF, Chen J, Cheng Y, Zhou B. The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. J Virol 2023; 97:e0036423. [PMID: 37255314 PMCID: PMC10231254 DOI: 10.1128/jvi.00364-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
Classical swine fever virus (CSFV) is a highly pathogenic RNA virus belonging to the Flaviviridae family that can cause deadly classical swine fever (CSF) in pigs. However, the molecular details of virus replication in the host are still unclear. Our previous studies have reported that several Rab proteins mediate CSFV entry into host cells, but it is unknown whether CSFV hijacks other Rab proteins for effective viral infection. Here, we systematically studied the role of Rab14 protein in regulating lipid metabolism for promoting viral assembly. First, Rab14 knockdown and overexpression significantly affected CSFV replication, indicating the essential role of Rab14 in CSFV infection. Interestingly, Rab14 could significantly affect virus replication in the late stage of infection. Mechanistically, CSFV NS5A recruited Rab14 to the ER, followed by ceramide transportation to the Golgi apparatus, where sphingomyelin was synthesized. The experimental data of small molecule inhibitors, RNA interference, and replenishment assay showed that the phosphatidylinositol-3-kinase (PI3K)/AKT/AS160 signaling pathway regulated the function of Rab14 to affect the transport of ceramide. More importantly, sphingomyelin on the Golgi apparatus contributed to the assembly of viral particles. Blockage of the Rab14 regulatory pathway induced the reduction of the content of sphingomyelin on the Golgi apparatus, impairing the assembly of virus particles. Our study clarifies that Rab14 regulates lipid metabolism and promotes CSFV replication, which provides insight into a novel function of Rab14 in regulating vesicles to transport lipids to the viral assembly factory. IMPORTANCE The Rab protein family members participate in the viral replication of multiple viruses and play important roles in the virus infection cycle. Our previous research focused on Rab5/7/11, which regulated the trafficking of vesicles in the early stage of CSFV infection, especially in viral endocytosis. However, the role of other Rab proteins in CSFV replication is unclear and needs further clarification. Strikingly, we screened some Rabs and found the important role of Rab14 in CSFV infection. Virus infection mobilized Rab14 to regulate the vesicle to transport ceramide from the ER to the Golgi apparatus, further promoting the synthesis of sphingomyelin and facilitating virus assembly. The treatment of inhibitors showed that the lipid transport mediated by Rab14 was regulated by the PI3K/AKT/AS160 signaling pathway. Knockdown of Rab14 or the treatment with PI3K/AKT/AS160 inhibitors reduced the ceramide content in infected cells and hindered virus assembly. Our study is the first to explain that vesicular lipid transport regulated by Rab promotes CSFV assembly, which is conducive to the development of antiviral drugs.
Collapse
Affiliation(s)
- Ya-Yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji Shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-Chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiang-Fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
9
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
10
|
Small Nucleolar RNAs and Their Comprehensive Biological Functions in Hepatocellular Carcinoma. Cells 2022; 11:cells11172654. [PMID: 36078062 PMCID: PMC9454744 DOI: 10.3390/cells11172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of highly conserved, stable non-coding RNAs involved in both post-transcriptional modification of RNA and in ribosome biogenesis. Recent research shows that the dysfunction of snoRNAs plays a pivotal role in hepatocellular carcinoma (HCC) and related etiologies, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and non-alcoholic fatty liver disease (NAFLD). Growing evidence suggests that snoRNAs act as oncogenes or tumor suppressors in hepatocellular carcinoma (HCC) through multiple mechanisms. Furthermore, snoRNAs are characterized by their stability in body fluids and their clinical relevance and represent promising tools as diagnostic and prognostic biomarkers. SnoRNAs represent an emerging area of cancer research. In this review, we summarize the classification, biogenesis, activity, and functions of snoRNAs, as well as highlight the mechanism and roles of snoRNAs in HCC and related diseases. Our findings will aid in the understanding of complex processes of tumor occurrence and development, as well as suggest potential diagnostic markers and treatment targets. Furthermore, we discuss several limitations and suggest future research and application directions.
Collapse
|
11
|
Qian X, Wu B, Xu C, Qi Z. Hepatitis C Virus Infection Cycle-Specific MicroRNA Profiling Reveals Stage-Specific miR-4423-3p Targets RIG-I to Facilitate Infection. Front Cell Infect Microbiol 2022; 12:851917. [PMID: 35402303 PMCID: PMC8987439 DOI: 10.3389/fcimb.2022.851917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is one of the main causes of chronic liver diseases, the disorders of which involve multiple pathological processes and elements including host factors such as non-coding small RNAs. Although several genes have been reported to be correlated with HCV infection, the potential regulatory network has not been deciphered clearly. By small RNA sequencing, we clarified the expression profile of microRNAs (miRNAs) in HCV-infected Huh7 and Huh7.5.1 cells and identified 6 dysregulated miRNAs with the same expression trend and 32 dysregulated miRNAs with different expression trends during different stages of HCV life cycle. By looking into each infection stage, we found that 6 miRNAs were entry stage specific, 4 miRNAs were replication stage specific, and 1 miRNA was related to the transmission stage. Moreover, due to the fact that Huh7.5.1 cells have a retinoic acid-inducible gene 1 (RIG-I) mutation which causes reduced production of interferons (IFNs), we here focused on the miRNAs of different trends to decipher the RIG-I/IFN specific miRNAs. Among them, miR-4423-3p showed a significant promotive effect on HCV infection by suppressing RIG-I/IFN pathway through direct binding to RIG-I mRNA. Together, the results displayed novel insights into the miRNA regulatory networks in HCV infection and progression, thus providing a prosperous perspective into the establishment of novel therapeutic and diagnostic targets of the disease.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bingan Wu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Alvarado-Hernandez B, Ma Y, Sharma NR, Majerciak V, Lobanov A, Cam M, Zhu J, Zheng ZM. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. J Virol 2022; 96:e0178221. [PMID: 34787459 PMCID: PMC8826805 DOI: 10.1128/jvi.01782-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.
Collapse
Affiliation(s)
- Beatriz Alvarado-Hernandez
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Yanping Ma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Nishi R. Sharma
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, NCI/NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Genome Technology Laboratory, System Biology Center, NHLBI/NIH, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, NCI/NIH, Frederick, Maryland, USA
| |
Collapse
|
13
|
Zhang X, Ming Y, Fu X, Niu Y, Lin Q, Liang H, Luo X, Liu L, Li N. PI3K/AKT/p53 pathway inhibits infectious spleen and kidney necrosis virus infection by regulating autophagy and immune responses. FISH & SHELLFISH IMMUNOLOGY 2022; 120:648-657. [PMID: 34968710 DOI: 10.1016/j.fsi.2021.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT/p53 signaling pathway is activated by various types of cellular stimuli or pathogenic infection, and then regulates fundamental cellular functions to combat these stimulations. Here, we studied the meaningful roles of PI3K/AKT/p53 in regulating cellular machine such as autophagy, immune responses, as well as antiviral activity in Chinese perch brain (CPB) cells infected by infectious spleen and kidney necrosis virus (ISKNV), which is an agent caused devastating losses in mandarin fish (Siniperca chuatsi) industry. We found that ISKNV infection induced up-regulation of host PI3K/AKT/p53 axis, but inhibited autophagy in CPB cells. Interestingly, activation of PI3K/AKT/p53 axis factors trough agonists or overexpression dramatically decreased host autophagy level, inhibited ISKNV replication, and elevated the expression of immune-related genes in CPB cells. In contrast, suppression of PI3K/AKT/p53 pathway by inhibitors or small interfering RNA (siRNA)-mediated gene silence increased the autophagy and ISKNV replication, but down-regulated immune responses in CPB cells. All these results indicate that PI3K/AKT/p53 pathway plays an important role in anti-ISKNV infection and can be used as a new target for controlling ISKNV disease.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yue Ming
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yinjie Niu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xia Luo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
14
|
Sabariegos R, Albentosa-González L, Palmero B, Clemente-Casares P, Ramírez E, García-Crespo C, Gallego I, de Ávila AI, Perales C, Domingo E, Mas A. Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Front Microbiol 2021; 12:754664. [PMID: 34745059 PMCID: PMC8570118 DOI: 10.3389/fmicb.2021.754664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Blanca Palmero
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Eugenio Ramírez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
15
|
Xu W, Wu Y, Fang X, Zhang Y, Cai N, Wen J, Liao J, Zhang B, Chen X, Chu L. SnoRD126 promotes the proliferation of hepatocellular carcinoma cells through transcriptional regulation of FGFR2 activation in combination with hnRNPK. Aging (Albany NY) 2021; 13:13300-13317. [PMID: 33891563 PMCID: PMC8148486 DOI: 10.18632/aging.203014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Liver cancer is the sixth most common malignancy and the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma (HCC) is the primary type of liver cancer. Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SnoRD126 is an orphan C/D box snoRNA. How snoRD126 activates the PI3K-AKT pathway, and which domain of snoRD126 exerts its oncogenic function was heretofore completely unknown. Here, we demonstrate that snoRD126 binds to hnRNPK protein to regulate FGFR2 expression and activate the PI3K-AKT pathway. Importantly, we identified the critical domain of snoRD126 responsible for its cancer-promoting functions. Our study further confirms the role of snoRD126 in the progression of HCC and suggests that knockdown snoRD126 may be of potential value as a novel therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Ning Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| |
Collapse
|