1
|
Deutsch JM, Demko AM, Jaiyesimi OA, Foster G, Kindler A, Pitts KA, Vekich T, Williams GJ, Walker BK, Paul VJ, Garg N. Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation. mSystems 2024; 9:e0085624. [PMID: 39560405 DOI: 10.1128/msystems.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia natans, and Montastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes of Meandrina meandrites displayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCE Previous research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alyssa M Demko
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adelaide Kindler
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kelly A Pitts
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Tessa Vekich
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Brian K Walker
- GIS and Spatial Ecology Laboratory, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. G3 (BETHESDA, MD.) 2024; 14:jkae137. [PMID: 38900914 PMCID: PMC11304949 DOI: 10.1093/g3journal/jkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from 4 stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared with a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M Heinz
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lindsay K Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL 33149, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, USA
| |
Collapse
|
4
|
Chen Y, Bin Q, Liu H, Xie Y, Wang S, Lu J, Ou W, Zhang M, Wang L, Yu K. A novel biosensing strategy on the dynamic and on-site detection of Vibrio coralliilyticus eDNA for coral health warnings. Bioelectrochemistry 2024; 158:108697. [PMID: 38554560 DOI: 10.1016/j.bioelechem.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Heat stress and coral diseases are the predominant factors causing the degradation of coral reef ecosystems. Over recent years, Vibrio coralliilyticus was identified as a temperature-dependent pathogen causing tissue lysis in Pocillopora damicornis and one of the primary pathogens causing bleaching and mortality in other corals. Yet current detection techniques for V. coralliilyticus rely primarily on qPCR and ddPCR, which cannot meet the requirements for non-invasive and real-time detection. Herein, we developed an effective electrochemical biosensor modified by an Au-MoS2/rGO (AMG) nanocomposites and a specific capture probe to dynamically detect V. coralliilyticus environment DNA (eDNA) in aquarium experiments, with a lower limit of detection (0.28 fM) for synthetic DNA and a lower limit of quantification (9.8 fg/µL, ∼0.86 copies/µL) for genomic DNA. Its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). Notably, coral tissue started to lyse at only 29 °C when the concentration of V. coralliilyticus increased abruptly to 880 copies/µL, indicating the biosensor could reflect the types of pathogen and health risks of corals under heat stress. Overall, the novel and reliable electrochemical biosensing technology provides an efficient strategy for the on-site monitoring and early warning of coral health in the context of global warming.
Collapse
Affiliation(s)
- Yingzhan Chen
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Qi Bin
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyu Xie
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Lu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenchao Ou
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Man Zhang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Liwei Wang
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- School of Resources, Environment and Materials, School of Marine Sciences, School of Chemistry and Chemical Engineering, School of Life Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
5
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Heinz JM, Lu J, Huebner LK, Salzberg SL, Sommer M, Rosales SM. Novel metagenomics analysis of stony coral tissue loss disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573916. [PMID: 38260425 PMCID: PMC10802270 DOI: 10.1101/2024.01.02.573916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from four stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared to a prior metagenome analysis of the same dataset.
Collapse
Affiliation(s)
- Jakob M. Heinz
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Jennifer Lu
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission; St. Petersburg, FL 33701, United States
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
- Department of Computer Science, Johns Hopkins University; Baltimore, MD 21218, United States
- Department of Biostatistics, Johns Hopkins University; Baltimore, MD 21205, United States
| | - Markus Sommer
- Center for Computational Biology, Johns Hopkins University; Baltimore, MD 21211, United States
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering; Baltimore, MD 21218, United States
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami; Miami, FL 33149, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, FL 33149, United States
| |
Collapse
|
7
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
8
|
Work TM, Singhakarn C, Weatherby TM. Cytology in cnidaria using Exaiptasia as a model. DISEASES OF AQUATIC ORGANISMS 2024; 158:37-53. [PMID: 38661136 DOI: 10.3354/dao03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A need exists for additional methods to examine cnidaria at the cellular level to aid our understanding of health, anatomy, and physiology of this important group of organisms. This need is particularly acute given that disease is emerging as a major factor in declines of ecologically important functional groups such as corals. Here we describe a simple method to process cnidarian cells for microscopic examination using the model organism Exaiptasia. We show that this organism has at least 18 cell types or structures that can be readily distinguished based on defined morphological features. Some of these cells can be related back to anatomic features of the animal both at the light microscope and ultrastructural level. The cnidome of Exaiptasia may be more complex than what is currently understood. Moreover, cnidarian cells, including some types of cnidocytes, phagocytize cells other than endosymbionts. Finally, our findings shed light on morphologic complexity of cell-associated microbial aggregates and their intimate intracellular associations. The tools described here could be useful for other cnidaria.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50187, Honolulu, HI 96850, USA
| | - Chutimon Singhakarn
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50187, Honolulu, HI 96850, USA
| | - Tina M Weatherby
- University of Hawaii at Manoa, Biological Electron Microscope Facility, Honolulu, HI 96822, USA
| |
Collapse
|
9
|
Delgadillo-Ordoñez N, Garcias-Bonet N, Raimundo I, García FC, Villela H, Osman EO, Santoro EP, Curdia J, Rosado JGD, Cardoso P, Alsaggaf A, Barno A, Antony CP, Bocanegra C, Berumen ML, Voolstra CR, Benzoni F, Carvalho S, Peixoto RS. Probiotics reshape the coral microbiome in situ without detectable off-target effects in the surrounding environment. Commun Biol 2024; 7:434. [PMID: 38594357 PMCID: PMC11004148 DOI: 10.1038/s42003-024-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Inês Raimundo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francisca C García
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Eslam O Osman
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Erika P Santoro
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao Curdia
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao G D Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pedro Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Alsaggaf
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adam Barno
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chakkiath Paul Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carolina Bocanegra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
van de Water JAJM, Allemand D, Ferrier‐Pagès C. Bacterial symbionts of the precious coral Corallium rubrum are differentially distributed across colony-specific compartments and differ among colormorphs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13236. [PMID: 38444282 PMCID: PMC10915489 DOI: 10.1111/1758-2229.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.
Collapse
Affiliation(s)
- Jeroen A. J. M. van de Water
- Unité de Recherche sur la Biologie des Coraux Précieux CSM – CHANELCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Coral Ecophysiology Team, Department of Marine BiologyCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Department of Estuarine & Delta SystemsRoyal Netherlands Institute for Sea ResearchYersekeThe Netherlands
| | - Denis Allemand
- Centre Scientifique de MonacoMonacoPrincipality of Monaco
| | - Christine Ferrier‐Pagès
- Coral Ecophysiology Team, Department of Marine BiologyCentre Scientifique de MonacoMonacoPrincipality of Monaco
| |
Collapse
|
11
|
Dirgantara D, Afzal MS, Nakamura T. Current status of coral disease prevalence at Karimunjawa Island: correlation between land zonation and lesion occurrence. DISEASES OF AQUATIC ORGANISMS 2024; 157:1-17. [PMID: 38236078 DOI: 10.3354/dao03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Coral diseases have contributed significantly to the decline of coral populations at both local and global scales. The Karimunjawa Archipelago, located off the coast of Java in Indonesia, is a marine national park with a zonation-based approach, designated by the local government due to its rich coral reef biodiversity. Unfortunately, there is a limited amount of research regarding the prevalence of coral diseases in coral reefs located on the islands. We analyzed the coral reef lesion assemblages at 6 sites within 3 designated zones, namely Tourism, Aquaculture, and Core zones. Our investigation aimed to determine (1) the types, prevalence, and patterns of coral lesions, (2) the correlation between coral cover and lesion prevalence, and (3) the susceptibility of coral taxa to lesions. A significant difference of 80.54% in the total number of coral lesions was observed between the tourism zone (24.34%) and the core zone (10.36%). Fourteen different lesion types were identified; among the non-disease lesions, sediment damage was the most prevalent (9.95%), followed by disease lesions caused by white syndrome (3.7%). A correlation was found between the cover of dominant coral taxa and the prevalence of lesions (disease and non-disease) at all sites. Mean lesion prevalence across all zones ranged from moderate to high categories. These findings present current data on the distribution of coral lesions and their patterns across zones around Karimunjawa Island. Research on the etiology and epidemiology of coral lesions should be promoted to identify ways to prevent the spread of coral diseases in Karimunjawa.
Collapse
Affiliation(s)
- Dio Dirgantara
- Graduate school of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Mariyam Shidha Afzal
- Graduate school of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Takashi Nakamura
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
12
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
13
|
Howe-Kerr LI, Knochel AM, Meyer MD, Sims JA, Karrick CE, Grupstra CGB, Veglia AJ, Thurber AR, Vega Thurber RL, Correa AMS. Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean basins. THE ISME JOURNAL 2023; 17:2389-2402. [PMID: 37907732 PMCID: PMC10689786 DOI: 10.1038/s41396-023-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.
Collapse
Affiliation(s)
| | - Anna M Knochel
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jordan A Sims
- BioSciences Department, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - Carsten G B Grupstra
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, University of Puerto Rico, Mayagüez, PR, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Adrienne M S Correa
- BioSciences Department, Rice University, Houston, TX, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
14
|
Studivan MS, Eckert RJ, Shilling E, Soderberg N, Enochs IC, Voss JD. Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways. Mol Ecol 2023; 32:5394-5413. [PMID: 37646698 DOI: 10.1111/mec.17110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.
Collapse
Affiliation(s)
- Michael S Studivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Erin Shilling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Nash Soderberg
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ian C Enochs
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
15
|
Becker CC, Weber L, Zgliczynski B, Sullivan C, Sandin S, Muller E, Clark AS, Kido Soule MC, Longnecker K, Kujawinski EB, Apprill A. Microorganisms and dissolved metabolites distinguish Florida's Coral Reef habitats. PNAS NEXUS 2023; 2:pgad287. [PMID: 37719750 PMCID: PMC10504872 DOI: 10.1093/pnasnexus/pgad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.
Collapse
Affiliation(s)
- Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Biological Oceanography, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering,Cambridge, MA 02139, USA
| | - Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Brian Zgliczynski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Chris Sullivan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Erinn Muller
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Abigail S Clark
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Marine Science and Technology Department, The College of the Florida Keys, Key West, FL 33040, USA
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
16
|
Evans JS, Paul VJ, Ushijima B, Pitts KA, Kellogg CA. Investigating microbial size classes associated with the transmission of stony coral tissue loss disease (SCTLD). PeerJ 2023; 11:e15836. [PMID: 37637172 PMCID: PMC10460154 DOI: 10.7717/peerj.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Effective treatment and prevention of any disease necessitates knowledge of the causative agent, yet the causative agents of most coral diseases remain unknown, in part due to the difficulty of distinguishing the pathogenic microbe(s) among the complex microbial backdrop of coral hosts. Stony coral tissue loss disease (SCTLD) is a particularly destructive disease of unknown etiology, capable of transmitting through the water column and killing entire colonies within a matter of weeks. Here we used a previously described method to (i) isolate diseased and apparently healthy coral colonies within individual mesocosms containing filtered seawater with low microbial background levels; (ii) incubate for several days to enrich the water with coral-shed microbes; (iii) use tangential-flow filtration to concentrate the microbial community in the mesocosm water; and then (iv) filter the resulting concentrate through a sequential series of different pore-sized filters. To investigate the size class of microorganism(s) associated with SCTLD transmission, we used 0.8 µm pore size filters to capture microeukaryotes and expelled zooxanthellae, 0.22 µm pore size filters to capture bacteria and large viruses, and 0.025 µm pore size filters to capture smaller viruses. In an attempt to further refine which size fraction(s) contained the transmissible element of SCTLD, we then applied these filters to healthy "receiver" coral fragments and monitored them for the onset of SCTLD signs over three separate experimental runs. However, several factors outside of our control confounded the transmission results, rendering them inconclusive. As the bulk of prior studies of SCTLD in coral tissues have primarily investigated the associated bacterial community, we chose to characterize the prokaryotic community associated with all mesocosm 0.22 µm pore size filters using Illumina sequencing of the V4 region of the 16S rRNA gene. We identified overlaps with prior SCTLD studies, including the presence of numerous previously identified SCTLD bioindicators within our mesocosms. The identification in our mesocosms of specific bacterial amplicon sequence variants that also appear across prior studies spanning different collection years, geographic regions, source material, and coral species, suggests that bacteria may play some role in the disease.
Collapse
Affiliation(s)
- James S. Evans
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, Florida, United States of America
| | - Valerie J. Paul
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
| | - Blake Ushijima
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
- Department of Biology & Marine Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, United States of America
| | - Kelly A. Pitts
- Smithsonian Marine Station, Ft. Pierce, Florida, United States of America
| | - Christina A. Kellogg
- St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, Florida, United States of America
| |
Collapse
|
17
|
Robertson EP, Walsh DP, Martin J, Work TM, Kellogg CA, Evans JS, Barker V, Hawthorn A, Aeby G, Paul VJ, Walker BK, Kiryu Y, Woodley CM, Meyer JL, Rosales SM, Studivan M, Moore JF, Brandt ME, Bruckner A. Rapid prototyping for quantifying belief weights of competing hypotheses about emergent diseases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117668. [PMID: 36958278 DOI: 10.1016/j.jenvman.2023.117668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.
Collapse
Affiliation(s)
- Ellen P Robertson
- Contract Quantitative Ecologist, US Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA.
| | - Julien Martin
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | | | - Aine Hawthorn
- U.S. Geological Survey National Wildlife Health Center, Western Fisheries Research Center, Seattle, WA, USA
| | - Greta Aeby
- Smithsonian Marine Station, Fort Pierce, FL, USA
| | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Arts and Sciences, Dania Beach, FL, USA
| | - Yasunari Kiryu
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA
| | - Cheryl M Woodley
- Hollings Marine Laboratory, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration's National Ocean Service, Charleston, SC, USA
| | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Michael Studivan
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jennifer F Moore
- Moore Ecological Analysis and Management, LLC, Gainesville, FL, USA
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Andrew Bruckner
- Florida Keys National Marine Sanctuary, NOAA, Key Largo, FL, USA
| |
Collapse
|
18
|
Ashraf N, Anas A, Sukumaran V, Gopinath G, Idrees Babu KK, Dinesh Kumar PK. Recent advancements in coral health, microbiome interactions and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163085. [PMID: 36996987 DOI: 10.1016/j.scitotenv.2023.163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
Corals are the visible indicators of the disasters induced by global climate change and anthropogenic activities and have become a highly vulnerable ecosystem on the verge of extinction. Multiple stressors could act individually or synergistically which results in small to large scale tissue degradation, reduced coral covers, and makes the corals vulnerable to various diseases. The coralline diseases are like the Chicken pox in humans because they spread hastily throughout the coral ecosystem and can devastate the coral cover formed over centuries in an abbreviated time. The extinction of the entire reef ecosystem will alter the ocean and earth's amalgam of biogeochemical cycles causing a threat to the entire planet. The current manuscript provides an overview of the recent advancement in coral health, microbiome interactions and climate change. Culture dependent and independent approaches in studying the microbiome of corals, the diseases caused by microorganisms, and the reservoirs of coral pathogens are also discussed. Finally, we discuss the possibilities of protecting the coral reefs from diseases through microbiome transplantation and the capabilities of remote sensing in monitoring their health status.
Collapse
Affiliation(s)
- Nizam Ashraf
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Abdulaziz Anas
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India.
| | - Vrinda Sukumaran
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduvypu Campus, Kochi 682 508, India
| | - K K Idrees Babu
- Department of Science and Technology, Kavaratti, Lakshadweep 682555, India
| | - P K Dinesh Kumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| |
Collapse
|
19
|
Beavers KM, Van Buren EW, Rossin AM, Emery MA, Veglia AJ, Karrick CE, MacKnight NJ, Dimos BA, Meiling SS, Smith TB, Apprill A, Muller EM, Holstein DM, Correa AMS, Brandt ME, Mydlarz LD. Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae. Nat Commun 2023; 14:2915. [PMID: 37217477 PMCID: PMC10202950 DOI: 10.1038/s41467-023-38612-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD), one of the most pervasive and virulent coral diseases on record, affects over 22 species of reef-building coral and is decimating reefs throughout the Caribbean. To understand how different coral species and their algal symbionts (family Symbiodiniaceae) respond to this disease, we examine the gene expression profiles of colonies of five species of coral from a SCTLD transmission experiment. The included species vary in their purported susceptibilities to SCTLD, and we use this to inform gene expression analyses of both the coral animal and their Symbiodiniaceae. We identify orthologous coral genes exhibiting lineage-specific differences in expression that correlate to disease susceptibility, as well as genes that are differentially expressed in all coral species in response to SCTLD infection. We find that SCTLD infection induces increased expression of rab7, an established marker of in situ degradation of dysfunctional Symbiodiniaceae, in all coral species accompanied by genus-level shifts in Symbiodiniaceae photosystem and metabolism gene expression. Overall, our results indicate that SCTLD infection induces symbiophagy across coral species and that the severity of disease is influenced by Symbiodiniaceae identity.
Collapse
Affiliation(s)
- Kelsey M Beavers
- Biology Department, University of Texas at Arlington, Arlington, TX, USA
| | - Emily W Van Buren
- Biology Department, University of Texas at Arlington, Arlington, TX, USA
| | - Ashley M Rossin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Madison A Emery
- Biology Department, University of Texas at Arlington, Arlington, TX, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Carly E Karrick
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Bradford A Dimos
- Biology Department, University of Texas at Arlington, Arlington, TX, USA
| | - Sonora S Meiling
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Tyler B Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Laura D Mydlarz
- Biology Department, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
20
|
Ushijima B, Gunasekera SP, Meyer JL, Tittl J, Pitts KA, Thompson S, Sneed JM, Ding Y, Chen M, Jay Houk L, Aeby GS, Häse CC, Paul VJ. Chemical and genomic characterization of a potential probiotic treatment for stony coral tissue loss disease. Commun Biol 2023; 6:248. [PMID: 37024599 PMCID: PMC10079959 DOI: 10.1038/s42003-023-04590-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023] Open
Abstract
Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology & Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA.
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| | | | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica Tittl
- Department of Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Kelly A Pitts
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Sharon Thompson
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer M Sneed
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - L Jay Houk
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Greta S Aeby
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Fort Piece, FL, 34949, USA.
| |
Collapse
|
21
|
Theirlynck T, Mendonça IRW, Engelen AH, Bolhuis H, Collado-Vides L, van Tussenbroek BI, García-Sánchez M, Zettler E, Muyzer G, Amaral-Zettler L. Diversity of the holopelagic Sargassum microbiome from the Great Atlantic Sargassum Belt to coastal stranding locations. HARMFUL ALGAE 2023; 122:102369. [PMID: 36754458 DOI: 10.1016/j.hal.2022.102369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
The holopelagic brown macroalgae Sargassum natans and Sargassum fluitans form essential habitats for attached and mobile fauna which contributes to a unique biodiversity in the Atlantic Ocean. However, holopelagic Sargassum natans (genotype I & VIII) and Sargassum fluitans (genotype III) have begun forming large accumulations with subsequent strandings on the western coast of Africa, the Caribbean and northern Brazil, threatening local biodiversity of coastal ecosystems and triggering economic losses. Moreover, stranded masses of holopelagic Sargassum may introduce or facilitate growth of bacteria that are not normally abundant in coastal regions where Sargassum is washing ashore. Hitherto, it is not clear how the holopelagic Sargassum microbiome varies across its growing biogeographic range and what factors drive the microbial composition. We determined the microbiome associated with holopelagic Sargassum from the Great Atlantic Sargassum Belt to coastal stranding sites in Mexico and Florida. We characterized the Sargassum microbiome via amplicon sequencing of the 16S V4 region hypervariable region of the rRNA gene. The microbial community of holopelagic Sargassum was mainly composed of photo(hetero)trophs, organic matter degraders and potentially pathogenic bacteria from the Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae. Sargassum genotypes S. natans I, S. natans VIII and S. fluitans III contained similar microbial families, but relative abundances and diversity varied. LEfSE analyses further indicated biomarker genera that were indicative of Sargassum S. natans I/VIII and S. fluitans III. The holopelagic Sargassum microbiome showed biogeographic patterning with high relative abundances of Vibrio spp., but additional work is required to determine whether that represents health risks in coastal environments. Our study informs coastal management policy, where the adverse sanitary effects of stranded Sargassum might impact the health of coastal ecosystems.
Collapse
Affiliation(s)
- Tom Theirlynck
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Inara Regina W Mendonça
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090, Brazil
| | - Aschwin H Engelen
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-139, Faro, Portugal
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Ligia Collado-Vides
- Department of Biological Sciences, Institute for Water and Environment, Florida International University, 11200 SW 8th Street, Miami, 33199, FL, United States of America
| | - Brigitta I van Tussenbroek
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM, Prol. Av. Niños Héroes S/N, Puerto Morelos, C.P. 77580, Q. Roo, Mexico
| | - Marta García-Sánchez
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología-UNAM, Prol. Av. Niños Héroes S/N, Puerto Morelos, C.P. 77580, Q. Roo, Mexico; Instituto de Ingeniería, UNAM, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Erik Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Linda Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Texel, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
22
|
Studivan MS, Baptist M, Molina V, Riley S, First M, Soderberg N, Rubin E, Rossin A, Holstein DM, Enochs IC. Transmission of stony coral tissue loss disease (SCTLD) in simulated ballast water confirms the potential for ship-born spread. Sci Rep 2022; 12:19248. [PMID: 36357458 PMCID: PMC9649619 DOI: 10.1038/s41598-022-21868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented epizootic disease, representing a substantial threat to the persistence and health of coral reef ecosystems in the Tropical Western Atlantic since its first observation near Miami, Florida in 2014. In addition to transport between adjacent reefs indicative of waterborne pathogen(s) dispersing on ocean currents, it has spread throughout the Caribbean to geographically- and oceanographically-isolated reefs, in a manner suggestive of ship and ballast water transmission. Here we evaluate the potential for waterborne transmission of SCTLD including via simulated ballast water, and test the efficacy of commonly-used UV radiation treatment of ballast water. Two species of reef-building corals (Orbicella faveolata and Pseudodiploria strigosa) were subjected to (1) disease-exposed or UV-treated disease-exposed water, and (2) a ballast hold time series of disease-exposed water in two carefully-controlled experiments to evaluate transmission. Our experiments demonstrated transmission of SCTLD through water, rather than direct contact between diseased and healthy corals. While UV treatment of disease-exposed water led to a 50% reduction in the number of corals exhibiting disease signs in both species, the statistical risk of transmission and volume of water needed to elicit SCTLD lesions remained similar to untreated disease-exposed water. The ballast hold time (24 h vs. 120 h) did not have a significant effect on the onset of visible disease signs for either species, though there appeared to be some evidence of a concentration effect for P. strigosa as lesions were only observed after the 120 h ballast hold time. Results from both experiments suggest that the SCTLD pathogens can persist in both untreated and UV-treated ballast water and remain pathogenic. Ballast water may indeed pose a threat to the continued spread and persistence of SCTLD, warranting further investigation of additional ballast water treatments and pathogen detection methods.
Collapse
Affiliation(s)
- Michael S Studivan
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA.
| | - Michelle Baptist
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Vanessa Molina
- Excet, Inc., 6225 Brandon Ave #360, Springfield, VA, 22150, USA
| | - Scott Riley
- Excet, Inc., 6225 Brandon Ave #360, Springfield, VA, 22150, USA
| | - Matthew First
- U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Nash Soderberg
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Ewelina Rubin
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
- University of Florida, 2033 Mowry Rd, Gainesville, FL, 32611, USA
| | - Ashley Rossin
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ian C Enochs
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
| |
Collapse
|
23
|
Glidden CK, Field LC, Bachhuber S, Hennessey SM, Cates R, Cohen L, Crockett E, Degnin M, Feezell MK, Fulton‐Bennett HK, Pires D, Poirson BN, Randell ZH, White E, Gravem SA. Strategies for managing marine disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2643. [PMID: 35470930 PMCID: PMC9786832 DOI: 10.1002/eap.2643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The incidence of emerging infectious diseases (EIDs) has increased in wildlife populations in recent years and is expected to continue to increase with global environmental change. Marine diseases are relatively understudied compared with terrestrial diseases but warrant parallel attention as they can disrupt ecosystems, cause economic loss, and threaten human livelihoods. Although there are many existing tools to combat the direct and indirect consequences of EIDs, these management strategies are often insufficient or ineffective in marine habitats compared with their terrestrial counterparts, often due to fundamental differences between marine and terrestrial systems. Here, we first illustrate how the marine environment and marine organism life histories present challenges and opportunities for wildlife disease management. We then assess the application of common disease management strategies to marine versus terrestrial systems to identify those that may be most effective for marine disease outbreak prevention, response, and recovery. Finally, we recommend multiple actions that will enable more successful management of marine wildlife disease emergencies in the future. These include prioritizing marine disease research and understanding its links to climate change, improving marine ecosystem health, forming better monitoring and response networks, developing marine veterinary medicine programs, and enacting policy that addresses marine and other wildlife diseases. Overall, we encourage a more proactive rather than reactive approach to marine wildlife disease management and emphasize that multidisciplinary collaborations are crucial to managing marine wildlife health.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
- Present address:
Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Laurel C. Field
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Silke Bachhuber
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Robyn Cates
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Lesley Cohen
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Elin Crockett
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Michelle Degnin
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Maya K. Feezell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Devyn Pires
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | | | - Zachary H. Randell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Erick White
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Sarah A. Gravem
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
24
|
Lin LC, Tsai YC. Isolation and characterization of a Vibrio owensii phage phi50-12. Sci Rep 2022; 12:16390. [PMID: 36180722 PMCID: PMC9525291 DOI: 10.1038/s41598-022-20831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio owensii is a widely distributed marine vibrio species that causes acute hepatopancreatic necrosis in the larvae of Panulirus ornatus and Penaeus vannamei, and is also associated with Montipora white syndrome in corals. We characterized V. owensii GRA50-12 as a potent pathogen using phenotypic, biochemical, and zebrafish models. A virulent phage, vB_VowP_phi50-12 (phi50-12), belonging to the N4-like Podoviridae, was isolated from the same habitat as that of V. owensii GRA50-12 and characterized. This phage possesses a unique sequence with no similar hits in the public databases and has a short latent time (30 min), a large burst size (106 PFU/infected cell), and a wide range of pH and temperature stabilities. Moreover, phi50-12 also demonstrated a strong lysis ability against V. owensii GRA50-12. SDS-PAGE revealed at least nine structural proteins, four of which were confirmed using LC–MS/MS analysis. The size of the phi50-12 genome was 68,059 bp, with 38.5% G + C content. A total of 101 ORFs were annotated, with 17 ORFs having closely related counterparts in the N4-like vibrio phage. Genomic sequencing confirmed the absence of antibiotic resistance genes or virulence factors. Comparative studies have shown that phi50-12 has a unique genomic arrangement, except for the well-conserved core regions of the N4-like phages. Phylogenetic analysis demonstrated that it belonged to a group of smaller genomes of N4-like vibrio phages. The therapeutic effect in the zebrafish model suggests that phi50-12 could be a potential candidate for application in the treatment of V. owensii infection or as a biocontrol agent. However, further research must be carried out to confirm the efficacy of phage50-12.
Collapse
Affiliation(s)
- Ling-Chun Lin
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Yu-Chuan Tsai
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| |
Collapse
|
25
|
Ushijima B, Saw JH, Videau P, Häse CC. Comparison of Vibrio coralliilyticus virulence in Pacific oyster larvae and corals. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380530 DOI: 10.1099/mic.0.001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterium Vibrio coralliilyticus has been implicated in mass mortalities of corals and shellfish larvae. However, using corals for manipulative infection experiments can be logistically difficult compared to other model organisms, so we aimed to establish oyster larvae infections as a proxy model. Therefore, this study assessed the virulence of six wild-type V. coralliilyticus strains, and mutants of one strain with deletions of known virulence factors, between Pacific oyster larvae (Crassostrea gigas) and Hawaiian rice coral (Montipora capitata) infection systems. The wild-type strains tested displayed variable virulence in each system, but virulence levels between hosts were not necessarily comparable. Strains RE98 and OCN008 maintained a medium to high level of virulence across hosts and appeared to be more generalist pathogens. Strain H1, in contrast, was avirulent towards coral but displayed a medium level of virulence towards oyster larvae. Interestingly, the BAA-450 type strain had a medium level of virulence towards coral and was the least virulent to oyster larvae. A comparison of known virulence factors determined that the flagellum, motility or chemotaxis, all of which play a significant role in coral infections, were not crucial for oyster infections with strain OCN008. A genomic comparison of the newly sequenced strain H1 with the other strains tested identified 16 genes potentially specific to coral pathogens that were absent in H1. This is both the first comparison of various V. coralliilyticus strains across infection systems and the first investigation of a strain that is non-virulent to coral. Our results indicate that the virulence of V. coralliilyticus strains in coral is not necessarily indicative of virulence in oyster larvae, and that the set of genes tested are not required for virulence in both model systems. This study increases our understanding of the virulence between V. coralliilyticus strains and helps assess their potential threat to marine environments and shellfish industries.
Collapse
Affiliation(s)
- Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, USA
- Present address: Bayer Crop Science, MO, Chesterfield, USA
| | - Claudia C Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
26
|
Deutsch JM, Mandelare-Ruiz P, Yang Y, Foster G, Routhu A, Houk J, De La Flor YT, Ushijima B, Meyer JL, Paul VJ, Garg N. Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. JOURNAL OF NATURAL PRODUCTS 2022; 85:462-478. [PMID: 35112871 DOI: 10.1021/acs.jnatprod.1c01110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paige Mandelare-Ruiz
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yingzhe Yang
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Apurva Routhu
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jay Houk
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Yesmarie T De La Flor
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Julie L Meyer
- Department of Soil and Water Sciences, University of Florida, Gainesville, Florida 32603, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida 34949, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Ahmed N, Mohamed HF, Xu C, Sun X, Huang L. Novel antibacterial activity of Sargassum fusiforme extract against coral white band disease. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Evans JS, Paul VJ, Ushijima B, Kellogg CA. Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biol Methods Protoc 2022; 7:bpac007. [PMID: 35187265 PMCID: PMC8848328 DOI: 10.1093/biomethods/bpac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 08/29/2023] Open
Abstract
The causative agents of most coral diseases today remain unknown, complicating disease response and restoration efforts. Pathogen identifications can be hampered by complex microbial communities naturally associated with corals and seawater, which create complicating "background noise" that can potentially obscure a pathogen's signal. Here, we outline an approach to investigate waterborne coral diseases that use a combination of coral mesocosms, tangential flow filtration, and size fractionation to reduce the impact of this background microbial diversity, compensate for unknown infectious dose, and further narrow the suspect pool of potential pathogens. As proof of concept, we use this method to compare the bacterial communities shed into six Montastraea cavernosa coral mesocosms and demonstrate this method effectively detects differences between diseased and healthy coral colonies. We found several amplicon sequence variants (ASVs) in the diseased mesocosms that represented 100% matches with ASVs identified in prior studies of diseased coral tissue, further illustrating the effectiveness of our approach. Our described method is an effective alternative to using coral tissue or mucus to investigate waterborne coral diseases of unknown etiology and can help more quickly narrow the pool of possible pathogens to better aid in disease response efforts. Additionally, this versatile method can be easily adapted to characterize either the entire microbial community associated with a coral or target-specific microbial groups, making it a beneficial approach regardless of whether a causative agent is suspected or is completely unknown.
Collapse
Affiliation(s)
- James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
| | | | - Blake Ushijima
- Smithsonian Marine Station, Ft. Pierce, FL 34949, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
| |
Collapse
|
29
|
Characterization of the Microbiome of Corals with Stony Coral Tissue Loss Disease along Florida's Coral Reef. Microorganisms 2021; 9:microorganisms9112181. [PMID: 34835306 PMCID: PMC8623284 DOI: 10.3390/microorganisms9112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) is an emergent and often lethal coral disease that was first reported near Miami, FL (USA) in 2014. Our objective was to determine if coral colonies showing signs of SCTLD possess a specific microbial signature across five susceptible species sampled in Florida’s Coral Reef. Three sample types were collected: lesion tissue and apparently unaffected tissue of diseased colonies, and tissue of apparently healthy colonies. Using 16S rRNA high-throughput gene sequencing, our results show that, for every species, the microbial community composition of lesion tissue was significantly different from healthy colony tissue and from the unaffected tissue of diseased colonies. The lesion tissue of all but one species (Siderastrea siderea) had higher relative abundances of the order Rhodobacterales compared with other types of tissue samples, which may partly explain why S. siderea lesions often differed in appearance compared to other species. The order Clostridiales was also present at relatively high abundances in the lesion tissue of three species compared to healthy and unaffected tissues. Stress often leads to the dysbiosis of coral microbiomes and increases the abundance of opportunistic pathogens. The present study suggests that Rhodobacterales and Clostridiales likely play an important role in SCTLD.
Collapse
|
30
|
Kelley ER, Sleith RS, Matz MV, Wright RM. Gene expression associated with disease resistance and long-term growth in a reef-building coral. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210113. [PMID: 33996131 PMCID: PMC8059587 DOI: 10.1098/rsos.210113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rampant coral disease, exacerbated by climate change and other anthropogenic stressors, threatens reefs worldwide, especially in the Caribbean. Physically isolated yet genetically connected reefs such as Flower Garden Banks National Marine Sanctuary (FGBNMS) may serve as potential refugia for degraded Caribbean reefs. However, little is known about the mechanisms and trade-offs of pathogen resistance in reef-building corals. Here, we measure pathogen resistance in Montastraea cavernosa from FGBNMS. We identified individual colonies that demonstrated resistance or susceptibility to Vibrio spp. in a controlled laboratory environment. Long-term growth patterns suggest no trade-off between disease resistance and calcification. Predictive (pre-exposure) gene expression highlights subtle differences between resistant and susceptible genets, encouraging future coral disease studies to investigate associations between resistance and replicative age and immune cell populations. Predictive gene expression associated with long-term growth underscores the role of transmembrane proteins involved in cell adhesion and cell-cell interactions, contributing to the growing body of knowledge surrounding genes that influence calcification in reef-building corals. Together these results demonstrate that coral genets from isolated sanctuaries such as FGBNMS can withstand pathogen challenges and potentially aid restoration efforts in degraded reefs. Furthermore, gene expression signatures associated with resistance and long-term growth help inform strategic assessment of coral health parameters.
Collapse
Affiliation(s)
- Emma R. Kelley
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Robin S. Sleith
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Rachel M. Wright
- Department of Biological Sciences, Smith College, Northampton, MA, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius. Antibiotics (Basel) 2021; 10:antibiotics10040391. [PMID: 33917401 PMCID: PMC8067407 DOI: 10.3390/antibiotics10040391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. In silico analysis of the genome of V. neptunius strain PP-145.98 led to the identification of two hitherto uncharacterized chromosomal loci encoding a probable vibriolysin-like metalloprotease and a putative collagenase, which were designated VnpA and ColA, respectively. Single defective mutants of each gene were obtained in V. neptunius PP-145.98, and the phospholipase, esterase and collagenase activities were studied and compared with those of the wild-type strain. The results showed that the single inactivation of vnpA resulted in a 3-fold reduction in phospholipase/esterase activity. Inactivation of colA reduced the collagenase activity by 50%. Finally, infection challenges performed in oyster larvae showed that ΔvnpA and ΔcolA—single mutant strains of V. neptunius—are between 2–3-fold less virulent than the wild-type strain. Thus, the present work demonstrates that the production of both VnpA and ColA is required for the full virulence of the bivalve pathogen V. neptunius.
Collapse
|
32
|
The organosulfur compound dimethylsulfoniopropionate (DMSP) is utilized as an osmoprotectant by Vibrio species. Appl Environ Microbiol 2021; 87:AEM.02235-20. [PMID: 33355097 PMCID: PMC8090876 DOI: 10.1128/aem.02235-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP), a key component of the global geochemical sulfur cycle, is a secondary metabolite produced in large quantities by marine phytoplankton and utilized as an osmoprotectant, thermoprotectant and antioxidant. Marine bacteria can use two pathways to degrade and catabolize DMSP, a demethylation pathway and a cleavage pathway that produces the climate active gas dimethylsulfide (DMS). Whether marine bacteria can also accumulate DMSP as an osmoprotectant to maintain the turgor pressure of the cell in response to changes in external osmolarity has received little attention. The marine halophile Vibrio parahaemolyticus, contains at least six osmolyte transporters, four betaine carnitine choline transport (BCCT) carriers BccT1-BccT4 and two ABC-family ProU transporters. In this study, we showed that DMSP is used as an osmoprotectant by V. parahaemolyticus and several other Vibrio species including V. cholerae and V. vulnificus Using a V. parahaemolyticus proU double mutant, we demonstrated that these ABC transporters are not required for DMSP uptake. However, a bccT null mutant lacking all four BCCTs had a growth defect compared to wild type in high salinity media supplemented with DMSP. Using mutants possessing only one functional BCCT in growth pattern assays, we identified two BCCT-family transporters, BccT1 and BccT2, which are carriers of DMSP. The only V. parahaemolyticus BccT homolog that V. cholerae and V. vulnificus possess is BccT3 and functional complementation in Escherichia coli MKH13 showed V. cholerae VcBccT3 could transport DMSP. In V. vulnificus strains, we identified and characterized an additional BCCT family transporter, which we named BccT5 that was also a carrier for DMSP.Importance DMSP is present in the marine environment, produced in large quantities by marine phytoplankton as an osmoprotectant, and is an important component of the global geochemical sulfur cycle. This algal osmolyte has not been previously investigated for its role in marine heterotrophic bacterial osmotic stress response. Vibrionaceae are marine species, many of which are halophiles exemplified by V. parahaemolyticus, a species that possesses at least six transporters for the uptake of osmolytes. Here, we demonstrated that V. parahaemolyticus and other Vibrio species can accumulate DMSP as an osmoprotectant and show that several BCCT family transporters uptake DMSP. These studies suggest that DMSP is a significant bacterial osmoprotectant, which may be important for understanding the fate of DMSP in the environment. DMSP is produced and present in coral mucus and Vibrio species form part of the microbial communities associated with them. The function of DMSP in these interactions is unclear, but could be an important driver for these associations allowing Vibrio proliferation. This work suggests that DMSP likely has an important role in heterotrophic bacteria ecology than previously appreciated.
Collapse
|