1
|
Pan F, Yang Q, Liang Y, Yu X, Hu P, Zhang W, Pang Y. Lithology and elevated temperature impact phoD-harboring bacteria on soil available P enhancing in subtropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174815. [PMID: 39019286 DOI: 10.1016/j.scitotenv.2024.174815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants are generally limited by soil phosphorus (P) deficiency in forest ecosystems. Soil available P is influenced by lithology, temperature, and soil microbes. However, the interactive effects of these factors on soil P availability in subtropical forests remain unclear. To assess their impacts, we measured soil inorganic and available P fractions and the diversity, composition, and co-occurrence network of phoD-harboring bacteria in two contrasting forest soils (lithosols in karst forests and ferralsols in non-karst forests) in the subtropical regions of southwestern China across six temperature gradients. The present results showed that the complexities in composition and network and the diversity indices of phoD-harboring bacteria were higher in the karst forest soils than those in the non-karst forest soils, with marked differences in composition. In both types of forest soils, the complexities of composition and networks and the diversity indices were higher in the high-temperature regions (mean annual temperature (MAT) > 16 °C) compared to the low-temperature regions (MAT <16 °C). Soil total inorganic and available P contents were lower in the karst forest soils compared to the non-karst forest soils. Soil total available P contents were lower in the high temperature regions than those in the low temperature regions in both forest soils, whereas soil total inorganic P contents were contrary. Variance partitioning analysis showed that soil inorganic and available P fractions were predominantly explained by lithology and its interaction with soil microbes and climate. The present findings demonstrate that soil P availability in subtropical forests of southwestern China is influenced by lithology and temperature, which regulate the diversity, composition, and network connectivity of phoD-harboring bacteria. Furthermore, this study highlights the significance of controlling the composition of phoD-harboring bacteria for mitigating plant P deficiency in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Qian Yang
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China.
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Peilei Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China.
| | - Yuelan Pang
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Institute of Tea Science Research, Guangxi Zhuang Autonomous Region, Guilin 541000, Guangxi, China
| |
Collapse
|
2
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
3
|
Li W, Ullah S, Liu F, Deng F, Han X, Huang S, Xu Y, Yang M. Synergistic variation of rhizosphere soil phosphorus availability and microbial diversity with stand age in plantations of the endangered tree species Parashorea chinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1372634. [PMID: 38681220 PMCID: PMC11045988 DOI: 10.3389/fpls.2024.1372634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Introduction Soil physicochemical properties and nutrient composition play a significant role in shaping microbial communities, and facilitating soil phosphorus (P) transformation. However, studies on the mechanisms of interactions between P transformation characteristics and rhizosphere microbial diversity in P-deficient soils on longer time scales are still limited. Methods In this study, rhizosphere soils were collected from a pure plantation of Parashorea chinensis (P. chinensis) at six stand ages in the subtropical China, and the dynamic transformation characteristics of microbial diversity and P fractions were analyzed to reveal the variation of their interactions with age. Results Our findings revealed that the rhizosphere soils across stand ages were in a strongly acidic and P-deficient state, with pH values ranging from 3.4 to 4.6, and available P contents ranging from 2.6 to 7.9 mg·kg-1. The adsorption of P by Fe3+ and presence of high levels of steady-state organic P highly restricted the availability of P in soil. On long time scales, acid phosphatase activity and microbial biomass P were the main drivers of P activation. Moreover, pH, available P, and ammonium nitrogen were identified as key factors driving microbial community diversity. As stand age increased, most of the nutrient content indicators firstly increased and then decreased, the conversion of other forms of P to bio-available P became difficult, P availability and soil fertility began to decline. However, bacteria were still able to maintain stable species abundance and diversity. In contrast, stand age had a greater effect on the diversity of the fungal community than on the bacteria. The Shannon and Simpson indices varied by 4.81 and 0.70 for the fungi, respectively, compared to only 1.91 and 0.06 for the bacteria. Microorganisms play a dominant role in the development of their relationship with soil P. Discussion In conclusion, rhizosphere microorganisms in P. chinensis plantations gradually adapt to the acidic, low P environment over time. This adaptation is conducive to maintaining P bioeffectiveness and alleviating P limitation.
Collapse
Affiliation(s)
- Wannian Li
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi University, Nanning, China
| | - Saif Ullah
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi University, Nanning, China
| | - Fang Liu
- Nanning Arboretum, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fuchun Deng
- Nanning Arboretum, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaomei Han
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi University, Nanning, China
| | - Songdian Huang
- Nanning Arboretum, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuanyuan Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Pan F, Yu X, Chen M, Liang Y. Vegetation recovery reshapes the composition and enhances the network connectivity of phoD-harboring microorganisms to promote P availability in a karst ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170561. [PMID: 38309358 DOI: 10.1016/j.scitotenv.2024.170561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Soil phoD-harboring microorganisms can facilitate phosphorus (P) transformation and increase the available P (AP) in P-limited soils; however, the mechanism by which these microorganisms enhance AP throughout the vegetation recovery process of karst ecosystems is poorly understood. Accordingly, this study investigates the effect of vegetation recovery on soil AP and the community composition and network connectivity of phoD-harboring microorganisms to elucidate the mechanism by which phoD-harboring microorganisms enhance soil AP in the four vegetation recovery stages (i.e., grassland, shrubland, shrub-arbor forest, and arbor forest) in a karst ecosystem. Results show that soil total P, AP, and microbial biomass P concentrations, as well as alkaline phosphatase activities, litter and soil nutrients, and plant diversity indices (Shannon-Wiener and Pielou) increase with advancing vegetation recovery. Moreover, the diversity indices (Shannon-Wiener and Simpson) and network complexity of the phoD-harboring microorganisms also increase with advancing vegetation recovery, leading to distinct communities among the four recovery stages. Rhizobiales, Pseudomonadales, and Burkholderiales comprise the dominant phoD-harboring microorganism orders. The relative abundances of Pseudomonadales and Burkholderiales increase with advancing vegetation recovery; Rhizobiales is the highest in shrubland and the lowest in grassland. The structural equation model results show that advanced vegetation recovery is associated with increased plant diversity, litter nutrients, and soil nutrients. The network connectivity is enhanced with advancing vegetation recovery accompanied by increasing soil phosphatase activity and P availability. These results suggest that regulating the phoD-harboring microorganism composition and network connectivity is essential to alleviate plant P limitation in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Min Chen
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China.
| |
Collapse
|
5
|
Yang F, Sui L, Tang C, Li J, Cheng K, Xue Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145106. [PMID: 33736348 DOI: 10.1016/j.scitotenv.2021.145106] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The intervention of human in phosphorus pool seems to be a vicious circle. The rapid population growth leads to the global food shortage, which leads to the massive use of phosphate fertilizer and the continuous exploitation of phosphate rocks. With the massive loss and fixation of phosphate fertilizer in the soil, the unavailable phosphorus in the soil becomes superfluous, while the phosphate mineral resources turn to scarce. Interestingly, exogenous carbonaceous materials, notably, biochar and humic substances, have been widely used as soil conditioners in agricultural production up to date, among other actions to interfere with the balance between the different phosphate species, which offer effective roles for increasing soil available phosphorus. This article reviews the regulation mechanisms of biochar and humic substances on phosphorus availability and circulation, including improving soil physicochemical characteristics, regulating microbial community structure, and directly interacting with phosphorus to affect the fate of phosphorus in soil. Finally, the prospects for future research directions are made, and it is hoped that the review of this article can arouse people's attention to the current plight of agricultural production and provide some methods for improving the efficiency of phosphate fertilizer use in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Long Sui
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|