1
|
Siesto G, Pietrafesa R, Alberico G, Tedesco F, Cardinale M, Romano P, Capece A. Culturable yeast community associated with grape must and honey bees sampled from apiaries located in the vineyards. J Appl Microbiol 2024; 135:lxae160. [PMID: 38991988 DOI: 10.1093/jambio/lxae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
AIM In this study, we investigated culturable yeast community, present in grape must sampled from vineyards with apiaries on the borders, and in honey bees collected in these apiaries. METHODS AND RESULTS To this aim, yeasts isolated from spontaneously fermented grapes randomly collected in two vineyards (P1 and P2) with apiaries on the borders (A1 and A2) were compared to those isolated from spontaneously fermented grapes collected from a vineyard without apiary (P4). At the same time, yeast community was analyzed on bees collected in each apiary placed in the vineyards, in comparison to yeasts isolated from an apiary (A3) located far from the vineyards. The analysis was performed for two consecutive years (2021 and 2022). The isolated yeasts were identified by restriction analysis of amplified ITS region, followed by sequencing of ITS fragment.Our research showed that the presence of apiaries seems to increase yeast counts of grape must, in particular of Saccharomyces cerevisiae; furthermore, the permanence of apiaries in the vineyards allowed the recovering of these yeasts also from bees. CONCLUSIONS Our findings seem to corroborate the role of bees as vectors and reservoirs of oenologically relevant yeasts, such as a source of non-conventional yeasts with potential biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Grazia Alberico
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce-Monteroni, 73100 Lecce, Italy
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
3
|
Martins V, Teixeira A, Gerós H. A comparison of microbiota isolation methods reveals habitat preferences for fermentative yeasts and plant pathogenic fungi in the grape berry. Food Microbiol 2024; 118:104408. [PMID: 38049270 DOI: 10.1016/j.fm.2023.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023]
Abstract
The methodologies for profiling the grape berry microbiota have exponentially evolved in the past 25 years. Recently, concerns arose regarding the homogeneity in the protocols of grape harvesting, sequencing and bioinformatic analyses, but the bias introduced by the microbiota isolation method is still unexplored. This study followed a simple approach of comparing two most used methods of microbiota collection from grape berries (washing vs crushing), hypothesizing a significant impact in the outcome of the microbiota profiles analyzed by NGS metabarcoding. Experiments conducted in fruits of three cultivars of the Douro wine region showed that only 52 % of OTUs were common to both surface and juice microbiota, suggesting specific microbial niches. Thirteen fungal genera were abundantly detected in the fruit surface, including Alternaria, Aureobasidium, Cladosporium, Didymella and Bipolaris. Fermentative yeasts including Meyerozyma and Saccharomyces cerevisiae were exclusively detected in the juice, together with several Penicillium species. Distinct habitat preferences of species within the genera Alternaria, Sporobolomyces and Rhodotorula were also revealed. The study showed that the microbiota isolation method is crucial in the detection of certain plant pathogenic/saprophytic fungi and yeasts with biotechnological and oenological interest, adding novelty to the globally accepted assumption that S. cerevisiae in musts originates primarily from the cellar.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
4
|
Ge X, Wang J, Wang X, Liu Y, Dang C, Suo R, Sun J. Evaluation of Indigenous Yeasts Screened from Chinese Vineyards as Potential Starters for Improving Wine Aroma. Foods 2023; 12:3073. [PMID: 37628071 PMCID: PMC10453611 DOI: 10.3390/foods12163073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Exploitation of the biodiversity of native wine yeast is a means of modifying the sensory characteristics of wine. Samples from different regions in China were analysed to screen native isolates as potential starter cultures. Through morphological and molecular biological analyses, we found six species, belonging to four genera (Hanseniaspora, Saccharomyces, Rhodotorula and Metschnikowia). These species were subjected to stress tolerance assays (ethanol, glucose, SO2 and pH), enzymatic activity tests (sulphite reductase activity, β-glucosidase activity and protease activity) and fermentation tests. Saccharomyces cerevisiae showed a high tolerance to ethanol and completed fermentation independently. Hanseniaspora demonstrated good enzymatic activity and completed sequential fermentation. The fermentation experiment showed that the PCT4 strain had the best aroma complexity. This study provides a reference for selecting new starters from the perspective of flavour enzymes and tolerance and diversifying the sensory quality of wines from the region.
Collapse
Affiliation(s)
- Xiaoxin Ge
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Xiaodi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Chao Dang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| |
Collapse
|
5
|
Gardner JM, Alperstein L, Walker ME, Zhang J, Jiranek V. Modern yeast development: finding the balance between tradition and innovation in contemporary winemaking. FEMS Yeast Res 2023; 23:foac049. [PMID: 36255399 PMCID: PMC9990983 DOI: 10.1093/femsyr/foac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 11/13/2022] Open
Abstract
A key driver of quality in wines is the microbial population that undertakes fermentation of grape must. Winemakers can utilise both indigenous and purposefully inoculated yeasts to undertake alcoholic fermentation, imparting wines with aromas, flavours and palate structure and in many cases contributing to complexity and uniqueness. Importantly, having a toolbox of microbes helps winemakers make best use of the grapes they are presented with, and tackle fermentation difficulties with flexibility and efficiency. Each year the number of strains available commercially expands and more recently, includes strains of non-Saccharomyces, strains that have been improved using both classical and modern yeast technology and mixed cultures. Here we review what is available commercially, and what may be in the future, by exploring recent advances in fermentation relevant strain improvement technologies. We also report on the current use of microbes in the Australian wine industry, as reported by winemakers, as well as regulations around, and sentiment about the potential use of genetically modified organisms in the future.
Collapse
Affiliation(s)
- Jennifer M Gardner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Lucien Alperstein
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Michelle E Walker
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
6
|
Madden AA, Lahue C, Gordy CL, Little JL, Nichols LM, Calvert MD, Dunn RR, Smukowski Heil C. Sugar-seeking insects as a source of diverse bread-making yeasts with enhanced attributes. Yeast 2021; 39:108-127. [PMID: 34687090 DOI: 10.1002/yea.3676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Insects represent a particularly interesting habitat in which to search for novel yeasts of value to industry. Insect-associated yeasts have the potential to have traits relevant to modern food and beverage production due to insect-yeast interactions, with such traits including diverse carbohydrate metabolisms, high sugar tolerance, and general stress tolerance. Here, we consider the potential value of insect-associated yeasts in the specific context of baking. We isolated 63 yeast strains from 13 species of hymenoptera from the United States, representing 37 yeast species from 14 genera. Screening for the ability to ferment maltose, a sugar important for bread production, resulted in the identification of 13 strains of Candida, Lachancea, and Pichia species. We assessed their ability to leaven dough. All strains produced baked loaves comparable to a commercial baking strain of Saccharomyces cerevisiae. The same 13 strains were also grown under various sugar and salt conditions relevant to osmotic challenges experienced in the manufacturing processes and the production of sweet dough. We show that many of these yeast strains, most notably strains of Lachancea species, grow at a similar or higher rate and population size as commercial baker's yeast. We additionally assessed the comparative phenotypes and genetics of insect-associated S. cerevisiae strains unable to ferment maltose and identified baking-relevant traits, including variations in the HOG1 signaling pathway and diverse carbohydrate metabolisms. Our results suggest that non-conventional yeasts have high potential for baking and, more generally, showcase the success of bioprospecting in insects for identifying yeasts relevant for industrial uses.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,The Microbe Institute, Everett, Massachusetts, USA
| | - Caitlin Lahue
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,University of North Carolina Chapel-Hill, Chapel Hill, North Carolina, USA
| | - Claire L Gordy
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Joy L Little
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Martha D Calvert
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|