1
|
Zhang S, Deng Z, Yin X, Fang H, Song G, Liu Y, Jiang X, Wang X, Wang L. Bioaccessibility of lead and cadmium in soils around typical lead-acid power plants and their effect on gut microorganisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:107. [PMID: 38446285 DOI: 10.1007/s10653-023-01840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024]
Abstract
Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.
Collapse
Affiliation(s)
- Shuxi Zhang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhiwen Deng
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xixiang Yin
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China.
| | - Hongke Fang
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Guangmin Song
- Shandong Jinan Eco-Environmental Monitoring Center, Jinan, 250101, China
| | - Yuanyuan Liu
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiyan Jiang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaodong Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Lihong Wang
- Shandong Analysis and Test Center,, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
2
|
Zhang X, Li Y, Zhu K, Li C, Zhao Q, Gu F, Xu F, Chu Z. Microbiome-Metabolomic Analysis Revealed the Immunoprotective Effects of the Extract of Vanilla planifolia Andrew (EVPA) on Immunosuppressed Mice. Foods 2024; 13:701. [PMID: 38472814 PMCID: PMC10930650 DOI: 10.3390/foods13050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the immunoprotective effects of the extract of Vanilla planifolia Andrew (EVPA) on cyclophosphamide (Cy)-induced immunosuppression in mice. The results show that EVPA administration significantly alleviated the immune damage induced by Cy, as evidenced by an improved body weight, organ index, and colonic injury. A further analysis of microbial diversity revealed that the EVPA primarily increased the abundance of the beneficial bacteria Verrucomicrobiota, Lactobacillaceae, and Lactobacillus while decreasing Akkermansiaceae, Akkermansia, Romboutsia, and Lactococcus, thereby ameliorating the microbial dysbiosis caused by Cy. A metabolomic analysis revealed significant alterations in the microbial metabolite levels after EVPA treatment, including urobilinogen, formamidopyrimidine nucleoside triphosphate, Cer (d18:1/18:0), pantetheine, and LysoPC (15:0/0:0). These altered metabolites are associated with pathways related to sphingolipid metabolism, carbapenem biosynthesis, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, and porphyrin metabolism. Furthermore, significant correlations were observed between certain microbial groups and the differential metabolites. These findings provide new insights into the immunomodulatory effects of EVPA on the intestinal microbiota and metabolism, laying the foundation for more extensive utilization.
Collapse
Affiliation(s)
- Xin Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Yunlong Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Fenglin Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Zhong Chu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (X.Z.); (Y.L.); (K.Z.); (Q.Z.); (F.G.); (Z.C.)
- National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| |
Collapse
|
3
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
4
|
Yadav M, Kumar T, Maurya R, Pandey R, Chauhan NS. Characterization of Cellulomonas sp. HM71 as potential probiotic strain for human health. Front Cell Infect Microbiol 2023; 12:1082674. [PMID: 36710963 PMCID: PMC9880229 DOI: 10.3389/fcimb.2022.1082674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Cellulomonas sp. HM71, a human gut microbe possesses metabolic machinery to catabolize antigenic gluten, hence, holds promises as microbial therapy to treat gluten-derived celiac disease. However, its efficacy, safety, and survivability in the gastrointestinal ecosystem await functional elucidation. The current study is designed to characterize Cellulomonas sp. HM71 for its physiological, genomic, and probiotic properties. The morphological and physiological assessment indicates it as a coccus-shaped gram-positive bacterium growing optimally at 30°C in a neutral environment (pH 7.0). Cellulomonas sp. HM71 showed continuous growth even in stressful environments (salinity up to 3% NaCl and 6% KCl), variable temperature (25°C to 35°C) and pH (5-9), antibiotics, and gastric and intestinal conditions. The Cellulomonas sp. HM71 genome harbors diversified genetic machinery to modulate humongous metabolic potential for the host. This was substantiated by the hemolytic and CaCo-2 cell line assay which confirms its cellular adherence and biosafety. Notably, genome analysis did not identify any pathogenic islands. Probiotic characterization indicates its potential to overcome waterborne infections and digestion-related disorders. Cumulatively, Cellulomonas sp. HM71 can be considered a probiotic strain for improving human health because of the highlighted functions.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Diseases, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Division of Immunology and Infectious Diseases, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India,*Correspondence: Nar Singh Chauhan,
| |
Collapse
|
5
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
6
|
Taniya MA, Chung HJ, Al Mamun A, Alam S, Aziz MA, Emon NU, Islam MM, Hong STS, Podder BR, Ara Mimi A, Aktar Suchi S, Xiao J. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:915701. [PMID: 35937689 PMCID: PMC9355470 DOI: 10.3389/fcimb.2022.915701] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that affects normal brain development. The recent finding of the microbiota-gut-brain axis indicates the bidirectional connection between our gut and brain, demonstrating that gut microbiota can influence many neurological disorders such as autism. Most autistic patients suffer from gastrointestinal (GI) symptoms. Many studies have shown that early colonization, mode of delivery, and antibiotic usage significantly affect the gut microbiome and the onset of autism. Microbial fermentation of plant-based fiber can produce different types of short-chain fatty acid (SCFA) that may have a beneficial or detrimental effect on the gut and neurological development of autistic patients. Several comprehensive studies of the gut microbiome and microbiota-gut-brain axis help to understand the mechanism that leads to the onset of neurological disorders and find possible treatments for autism. This review integrates the findings of recent years on the gut microbiota and ASD association, mainly focusing on the characterization of specific microbiota that leads to ASD and addressing potential therapeutic interventions to restore a healthy balance of gut microbiome composition that can treat autism-associated symptoms.
Collapse
Affiliation(s)
- Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Science, Independent University, Dhaka, Bangladesh
| | - Hea-Jong Chung
- Gwanju Center, Korea Basic Science Institute, Gwanju, South Korea
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Safaet Alam
- Drugs and Toxins Research Division, BCSIR Laboratories, Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Md. Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Seong-T shool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Bristy Rani Podder
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anjuman Ara Mimi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Yadav M, Kumar T, Kanakan A, Maurya R, Pandey R, Chauhan NS. Isolation and Characterization of Human Intestinal Bacteria Cytobacillus oceanisediminis NB2 for Probiotic Potential. Front Microbiol 2022; 13:932795. [PMID: 35910631 PMCID: PMC9326467 DOI: 10.3389/fmicb.2022.932795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
Abstract
Systemic characterization of the human gut microbiota highlighted its vast therapeutic potential. Despite having enormous potential, the non-availability of their culture representatives created a bottleneck to understand the concept of microbiome-based therapeutics. The present study is aimed to isolate and evaluate the probiotic potential of a human gut isolate. Physiochemical, morphological, and phylogenetic characterization of a human gut isolate identifies it as a rod-shaped gram-negative microbe taxonomically affiliated with the Cytobacillus genus, having an optimal growth at 37°C in a partially alkaline environment (pH 8.0). This human gut isolate showed continuous growth in the presence of salts (up to 7% NaCl and 10% KCl), antibiotics, metals and metalloids [silver nitrate (up to 2 mM); lead acetate (up to 2 mM); sodium arsenate (up to 10 mM); potassium dichromate (up to 2 mM)], gastric and intestinal conditions, diverse temperature (25–50°C), and pH (5–9) conditions making it fit to survive in the highly variable gut environment. Genomic characterization identified the presence of gene clusters for diverse bio-catalytic activity, stress response, and antimicrobial activity, as well as it indicated the absence of pathogenic gene islands. A combination of functional features like anti-amylase, anti-lipase, glutenase, prolyl endopeptidase, lactase, bile salt hydrolase, cholesterol oxidase, and anti-pathogenic activity is indicative of its probiotic potential in various disorders. This was further substantiated by the CaCo-2 cell line assay confirming its cellular adherence and biosafety. Conclusively, human gut isolate possessed significant probiotic potential that can be used to promote animal and human health.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Akshay Kanakan
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Ranjeet Maurya
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
- *Correspondence: Nar Singh Chauhan
| |
Collapse
|
8
|
Shin J, Noh JR, Choe D, Lee N, Song Y, Cho S, Kang EJ, Go MJ, Ha SK, Chang DH, Kim JH, Kim YH, Kim KS, Jung H, Kim MH, Sung BH, Lee SG, Lee DH, Kim BC, Lee CH, Cho BK. Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. MICROBIOME 2021; 9:240. [PMID: 34906228 PMCID: PMC8672520 DOI: 10.1186/s40168-021-01189-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/04/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging. RESULTS Here, we report the changes in gut microbial communities and their functions in mouse models during ageing and three rejuvenation procedures including co-housing, serum-injection and parabiosis. Our results showed that the compositional structure and gene abundance of the intestinal microbiota changed dynamically during the ageing process. Through the three rejuvenation procedures, we observed that the microbial community and intestinal immunity of aged mice were comparable to those of young mice. The results of metagenomic data analysis underscore the importance of the high abundance of Akkermansia and the butyrate biosynthesis pathway in the rejuvenated mouse group. Furthermore, oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span, as evidenced by the frailty index and restoration of muscle atrophy. CONCLUSIONS In conclusion, the changes in key microbial communities and their functions during ageing and three rejuvenation procedures, and the increase in the healthy lifespan of aged mice by oral administration of Akkermansia. Our results provide a rationale for developing therapeutic strategies to achieve healthy active ageing. Video abstract.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| | - Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Min-Jeong Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Seok Kyun Ha
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Dong-Ho Chang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Myung Hee Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Bong-Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Korea
| | - Byoung-Chan Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
- Healthbiome Co., Ltd., Daejeon, 34141 Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea
| |
Collapse
|
9
|
Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A. Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Mehta P, Yadav M, Ahmed V, Goyal K, Pandey R, Chauhan NS. Culture-Independent Exploration of the Hypersaline Ecosystem Indicates the Environment-Specific Microbiome Evolution. Front Microbiol 2021; 12:686549. [PMID: 34777269 PMCID: PMC8581802 DOI: 10.3389/fmicb.2021.686549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Sambhar Salt Lake, situated in the state of Rajasthan, India is a unique temperate hypersaline ecosystem. Exploration of the salt lake microbiome will enable us to understand microbiome functioning in nutrient-deprived extreme conditions, as well as enrich our understanding of the environment-specific microbiome evolution. The current study has been designed to explore the Sambhar Salt Lake microbiome with a culture-independent multi-omics approach to define its metagenomic features and prevalent metabolic functionaries. The rRNA feature and protein feature-based phylogenetic reconstruction synchronously (R = 0.908) indicated the dominance of the archaea (Euryarchaeota) and bacteria (Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria). Metabolic reconstruction identified selective enrichment of the protein features associated with energy harvesting and stress tolerance (osmotic, oxidative, metal/metalloid, heat/cold, antibiotic, and desiccation). Metabolites identified with metabolome analysis confirmed physiological adaptation of the lake microbiome within a hypersaline and nutrient-deprived environment. Comparative metagenomics of the 212 metagenomes representing freshwater, alkaline, and saline ecosystem microbiome indicated the selective enrichment of the microbial groups and genetic features. The current study elucidates microbiome functioning within the nutrient-deprived harsh ecosystems. In summary, the current study harnessing the strength of multi-omics and comparative metagenomics indicates the environment-specific microbiome evolution.
Collapse
Affiliation(s)
- Priyanka Mehta
- Genomics and Molecular Medicine, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Vasim Ahmed
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Khushboo Goyal
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
11
|
Mapping of the benzoate metabolism by human gut microbiome indicates food-derived metagenome evolution. Sci Rep 2021; 11:5561. [PMID: 33692426 PMCID: PMC7946887 DOI: 10.1038/s41598-021-84964-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium benzoate is one of the widely used food preservatives and its metabolism in the human body has been studied only with the host perspective. Despite the human gut microbiome being considered as a virtual human organ, its role in benzoate metabolism is yet to be elucidated. The current study uses a multi-omic approach to rationalize the role of human gut microbes in benzoate metabolism. Microbial diversity analysis with multiple features synchronously indicates the dominance of Bacteroidetes followed by Firmicutes, Actinobacteria, and Proteobacteria. Metagenomic exploration highlights the presence of benzoate catabolic protein features. These features were mapped on to the aerobic and anaerobic pathways of benzoate catabolism. Benzoate catabolism assays identified statistically significant metabolites (P < 0.05) associated with the protocatechuate branch of the beta-ketoadipate pathway of the benzoate metabolism. Analysis of the 201 human gut metagenomic datasets across diverse populations indicates the omnipresence of these features. Enrichment of the benzoate catabolic protein features in human gut microbes rationalizes their role in benzoate catabolism, as well as indicates food-derived microbiome evolution.
Collapse
|