1
|
Germuskova Z, Sosa E, Lagos AC, Aamot HV, Beale MA, Bertelli C, Björkmann J, Couto N, Feige L, Greub G, Hallbäck ET, Hodcroft EB, Harmsen D, Jacob L, Jolley KA, Kahles A, Mather AE, Neher RA, Neves A, Niemann S, Nolte O, Peacock SJ, Razavi M, Roloff T, Schrenzel J, Sikora P, Sundqvist M, Mölling P, Egli A. Conference report: the first bacterial genome sequencing pan-European network conference. Microbes Infect 2024:105410. [PMID: 39218348 DOI: 10.1016/j.micinf.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Zoja Germuskova
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Elisa Sosa
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Amaya Campillay Lagos
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hege Vangstein Aamot
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Nursing, Health, and Laboratory Science, Østfold University College, Fredrikstad, Norway
| | - Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonas Björkmann
- Center for Molecular Diagnostics, Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Natacha Couto
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, United Kingdom
| | - Lena Feige
- Federal State Agency for Consumer and Health Protection Rhineland-Palatinate, Germany
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Erika Tång Hallbäck
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma B Hodcroft
- Swiss Tropical and Public Health Institute, University of Basel, Allschwil, Switzerland; Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | | | - Keith A Jolley
- Department of Biology, University of Oxford, United Kingdom
| | - Andre Kahles
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Switzerland
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich, United Kingdom; University of East Anglia, Norwich, United Kingdom
| | - Richard A Neher
- Swiss Institute of Bioinformatics, Geneva, Switzerland; Biozentrum, University of Basel, Basel, Switzerland
| | - Aitana Neves
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Stefan Niemann
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Germany
| | - Oliver Nolte
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Mohammad Razavi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Roloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Per Sikora
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Bioinformatics Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
3
|
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022; 10:microorganisms10051040. [PMID: 35630482 PMCID: PMC9148168 DOI: 10.3390/microorganisms10051040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout the entirety of human history, bacterial pathogens have played an important role and even shaped the fate of civilizations. The application of genomics within the last 27 years has radically changed the way we understand the biology and evolution of these pathogens. In this review, we discuss how the short- (Illumina) and long-read (PacBio, Oxford Nanopore) sequencing technologies have shaped the discipline of bacterial pathogen genomics, in terms of fundamental research (i.e., evolution of pathogenicity), forensics, food safety, and routine clinical microbiology. We have mined and discuss some of the most prominent data/bioinformatics resources such as NCBI pathogens, PATRIC, and Pathogenwatch. Based on this mining, we present some of the most popular sequencing technologies, hybrid approaches, assemblers, and annotation pipelines. A small number of bacterial pathogens are of very high importance, and we also present the wealth of the genomic data for these species (i.e., which ones they are, the number of antimicrobial resistance genes per genome, the number of virulence factors). Finally, we discuss how this discipline will probably be transformed in the near future, especially by transitioning into metagenome-assembled genomes (MAGs), thanks to long-read sequencing.
Collapse
|
4
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
5
|
Wang B, Xu Y, Zhao H, Wang X, Rao L, Guo Y, Yi X, Hu L, Chen S, Han L, Zhou J, Xiang G, Hu L, Chen L, Yu F. Methicillin-resistant Staphylococcus aureus in China: a multicentre longitudinal study and whole-genome sequencing. Emerg Microbes Infect 2022; 11:532-542. [PMID: 35060838 PMCID: PMC8843102 DOI: 10.1080/22221751.2022.2032373] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the genomic epidemiology of MRSA in China to identify predominant lineages and their associated genomic and phenotypic characteristics. In this study, we conducted whole-genome sequencing on 565 MRSA isolates from 7 provinces and municipalities of China between 2014 and 2020. MRSA isolates were subjected to MLST, spa typing, SCCmec typing, analysis of virulence determinants and antimicrobial susceptibility testing. Among 565 MRSA isolates tested, clonal complex (CC) 59 (31.2%), CC5 (23.4%) and CC8 (13.63%) were the major lineages, and the clonal structure was dominated by ST59-t437-IV (14.9%), ST239-t030-III (6.4%) and ST5-t2460-II (6.0%), respectively. Of note, CC8, the predominant lineage in 2014–2015, was replaced by CC59 after 2016. Interestingly, the extension and unstable structure of the CC5 population was observed, with ST5-t311-II, ST764-t1084-II, ST5-t2460-II and ST764-t002-II existing complex competition. Further analysis revealed that virulence determinant profiles and antibiograms were closely associated with the clonal lineage. The CC59 MRSA was less resistant to most tested antimicrobials and carried fewer resistance determinants. But rifampicin resistance and mupirocin resistance were closely linked with CC8 and CC5, respectively. MRSA isolates conservatively carried multiple virulence genes involved in various functions. PVL encoding genes were more common in ST338, CC30, CC398, ST8 and CC22, while tsst-1 was associated with ST5. In conclusion, the community-associated CC59-ST59-t437-IV lineage was predominant in China, with diverse clonal isolates alternately circulating in various geographical locations. Our study highlights the need for MRSA surveillance in China to monitor changes in MRSA epidemiology.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yanlei Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Lulin Rao
- Department of Laboratory Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xie Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Longhua Hu
- Department of Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shuying Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junying Zhou
- Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Long Hu
- Department of Bioinformatics, Hugobiotech, Beijing, People's Republic of China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Wegner F, Roloff T, Huber M, Cordey S, Ramette A, Gerth Y, Bertelli C, Stange M, Seth-Smith HMB, Mari A, Leuzinger K, Cerutti L, Harshman K, Xenarios I, Le Mercier P, Bittel P, Neuenschwander S, Opota O, Fuchs J, Panning M, Michel C, Hallin M, Demuyser T, De Mendonca R, Savelkoul P, Dingemans J, van der Veer B, Boers SA, Claas ECJ, Coolen JPM, Melchers WJG, Gunell M, Kallonen T, Vuorinen T, Hakanen AJ, Bernhoff E, Hetland MAK, Golan Berman H, Adar S, Moran-Gilad J, Wolf DG, Leib SL, Nolte O, Kaiser L, Schmutz S, Kufner V, Zaheri M, Trkola A, Aamot HV, Hirsch HH, Greub G, Egli A. External Quality Assessment of SARS-CoV-2 Sequencing: an ESGMD-SSM Pilot Trial across 15 European Laboratories. J Clin Microbiol 2022; 60:e0169821. [PMID: 34757834 PMCID: PMC8769736 DOI: 10.1128/jcm.01698-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.
Collapse
Affiliation(s)
- Fanny Wegner
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Samuel Cordey
- Laboratory of Virology, University Hospital Geneva, Geneva, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Yannick Gerth
- Center for Laboratory Medicine, Saint Gall, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Madlen Stange
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helena M. B. Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Alfredo Mari
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Karoline Leuzinger
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | - Pascal Bittel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Onya Opota
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Jonas Fuchs
- Institute of Virology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Michel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Thomas Demuyser
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Paul Savelkoul
- Department of Medical Microbiology, Maastricht University, Maastricht, Netherlands
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Jozef Dingemans
- Department of Medical Microbiology, Maastricht University, Maastricht, Netherlands
| | - Brian van der Veer
- Department of Medical Microbiology, Maastricht University, Maastricht, Netherlands
| | - Stefan A. Boers
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric C. J. Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Marianne Gunell
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Clinical Microbiology, University of Turku, Turku, Finland
| | - Teemu Kallonen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Clinical Microbiology, University of Turku, Turku, Finland
| | - Tytti Vuorinen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Clinical Microbiology, University of Turku, Turku, Finland
| | - Antti J. Hakanen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Clinical Microbiology, University of Turku, Turku, Finland
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Hadar Golan Berman
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Jacob Moran-Gilad
- School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Dana G. Wolf
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Oliver Nolte
- Center for Laboratory Medicine, Saint Gall, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, University Hospital Geneva, Geneva, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Hege Vangstein Aamot
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital and University of Oslo, Lørenskog, Norway
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Infectious Diseases and Hospital Epidemiology, University of Basel, Basel, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The advancement of molecular techniques such as whole-genome sequencing (WGS) has revolutionized the field of bacterial strain typing, with important implications for epidemiological surveillance and outbreak investigations. This review summarizes state-of-the-art techniques in strain typing and examines barriers faced by clinical and public health laboratories in implementing these new methodologies. RECENT FINDINGS WGS-based methodologies are on track to become the new 'gold standards' in bacterial strain typing, replacing traditional methods like pulsed-field gel electrophoresis and multilocus sequence typing. These new techniques have an improved ability to identify genetic relationships among organisms of interest. Further, advances in long-read sequencing approaches will likely provide a highly discriminatory tool to perform pangenome analyses and characterize relevant accessory genome elements, including mobile genetic elements carrying antibiotic resistance determinants in real time. Barriers to widespread integration of these approaches include a lack of standardized workflows and technical training. SUMMARY Genomic bacterial strain typing has facilitated a paradigm shift in clinical and molecular epidemiology. The increased resolution that these new techniques provide, along with epidemiological data, will facilitate the rapid identification of transmission routes with high confidence, leading to timely and effective deployment of infection control and public health interventions in outbreak settings.
Collapse
|
8
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|