1
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
2
|
Li X, Li P, Li D, Cai X, Gu S, Zeng L, Cheng D, Lu Y. Dynamics of Bactrocera dorsalis Resistance to Seven Insecticides in South China. INSECTS 2024; 15:679. [PMID: 39336647 PMCID: PMC11432527 DOI: 10.3390/insects15090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Bactrocera dorsalis is a highly invasive and destructive pest distributed worldwide. Chemical insecticides remain the primary measure for their control; however, this species has already developed resistance to several insecticides. In recent years, there have been several reports of monitoring B. dorsalis resistance in China, but continuous monitoring results are lacking and do not even span a decade. In this study, we monitored the dynamics of resistance to seven insecticides among 11 geographically distinct Chinese populations of B. dorsalis (2010-2013; follow-up in 2023). The 11 populations were found to adapt rapidly to antibiotic insecticides (spinosad, emamectin benzoate, and avermectin), reaching high levels of insecticide resistance in several areas. Overall, a decreasing trend in resistance to organophosphorus insecticides (chlorpyrifos and trichlorfon) was observed, whereas pyrethroid (beta-cypermethrin and cyhalothrin) resistance trends were observed to both increase and decrease. The monitoring of field resistance among different B. dorsalis populations over the duration of this study is important for improving the efficiency and sustainability of agricultural pest management, and the results provide a scientific basis for the development of more effective resistance management strategies.
Collapse
Affiliation(s)
- Xinlian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Peizheng Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Doudou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xinyan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shiwei Gu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Daifeng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Gwokyalya R, Herren JK, Weldon CW, Ndlela S, Gichuhi J, Ongeso N, Wairimu AW, Ekesi S, Mohamed SA. Shaping the Microbial Landscape: Parasitoid-Driven Modifications of Bactrocera dorsalis Microbiota. MICROBIAL ECOLOGY 2024; 87:81. [PMID: 38829379 PMCID: PMC11147917 DOI: 10.1007/s00248-024-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa.
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Joseph Gichuhi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Anne W Wairimu
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
4
|
Castro-López C, Pascacio-Villafán C, Aluja M, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Safety Assessment of the Potential Probiotic Bacterium Limosilactobacillus fermentum J23 Using the Mexican Fruit Fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a Novel In Vivo Model. Probiotics Antimicrob Proteins 2024; 16:233-248. [PMID: 36574190 DOI: 10.1007/s12602-022-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Safety assessment of probiotics is difficult but essential. In this work, the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), was used as in vivo model to assess the biosafety of Limosilactobacillus fermentum J23. In the first set of experiments, the strain was orally administered to adult flies through direct feeding, whereas in the second set of experiments, it was supplemented through the larval rearing medium. Data showed that L. fermentum J23 did not lead to increased mortality or treatment-related toxicity signs in adult female and male flies. Ingestion of L. fermentum J23 by adult female flies led to a statistically significant improvement in locomotor activity compared to the control groups (ca. 59% decrease in climbing time, p < 0.0001). A positive trend in lifespan extension under stress (maximum lifespan = 144 h) was also observed. When L. fermentum J23 was administered to the larvae, the adult emergence (p = 0.0099), sex ratio (p = 0.0043), and flight ability (p = 0.0009) increased significantly by 7%, 31%, and 8%, respectively, compared to the control diet. No statistical effect between the control diet and the L. fermentum J23-based diet for the number of pupae recovered, pupal weight, duration of the pupal stage, lifespan under stress, and morphological development was observed. We conclude that feeding L. fermentum J23 to the novel experimental model A. ludens had no toxic effects and could be safely considered a potential probiotic for food supplements; however, further studies are still needed to establish its biosafety in humans.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Carlos Pascacio-Villafán
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México
| | - Martin Aluja
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, 91897, Veracruz, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
5
|
Xia X, Wang Q, Gurr GM, Vasseur L, Han S, You M. Gut bacteria mediated adaptation of diamondback moth, Plutella xylostella, to secondary metabolites of host plants. mSystems 2023; 8:e0082623. [PMID: 37909778 PMCID: PMC10734469 DOI: 10.1128/msystems.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE In this study, we identify an important role of gut bacteria in mediating the adaptation of diamondback moth (DBM) to plant secondary metabolites. We demonstrate that kaempferol's presence in radish seedlings greatly reduces the fitness of DBM with depleted gut biota. Reinstatement of gut biota, particularly Enterobacter sp. EbPXG5, improved insect performance by degrading kaempferol. This bacterium was common in the larval gut of DBM, lining the epithelium as a protective film. Our work highlights the role of symbiotic bacteria in insect herbivore adaptation to plant defenses and provides a practical and mechanistic framework for developing a more comprehensive understanding of insect-gut microbe-host plant co-evolution.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, New South Wales, Australia
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Lange C, Boyer S, Bezemer TM, Lefort MC, Dhami MK, Biggs E, Groenteman R, Fowler SV, Paynter Q, Verdecia Mogena AM, Kaltenpoth M. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. THE ISME JOURNAL 2023; 17:1798-1807. [PMID: 37660231 PMCID: PMC10579242 DOI: 10.1038/s41396-023-01500-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fitness, expansion into novel ecological niches, and novel environments. These investigations have garnered heightened interest recently, yet a comprehensive understanding of how intraspecific variation in the assembly and function of these insect-associated microbial communities can shape the plasticity of insects is still lacking. Most research focuses on the core microbiome associated with a species of interest and ignores intraspecific variation. We argue that microbiome variation among insects can be an important driver of evolution, and we provide examples showing how such variation can influence fitness and health of insects, insect invasions, their persistence in new environments, and their responses to global environmental changes. A and B are two stages of an individual or a population of the same species. The drivers lead to a shift in the insect associated microbial community, which has consequences for the host. The complex interplay of those consequences affects insect adaptation and evolution and influences insect population resilience or invasion.
Collapse
Affiliation(s)
- Claudia Lange
- Manaaki Whenua Landcare Research, Lincoln, New Zealand.
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - T Martijn Bezemer
- Above-Belowground Interactions Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | - Eva Biggs
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | | | | | | | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Djobbi W, Msaad Guerfali M, Vallier A, Charaabi K, Charles H, Maire J, Parisot N, Hamden H, Fadhl S, Heddi A, Cherif A. Differential responses of Ceratitis capitata to infection by the entomopathogenic fungus Purpureocillium lilacinum. PLoS One 2023; 18:e0286108. [PMID: 37768994 PMCID: PMC10538767 DOI: 10.1371/journal.pone.0286108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/14/2023] [Indexed: 09/30/2023] Open
Abstract
The medfly Ceratitis capitata is one of the most damaging fruit pests with quarantine significance due to its extremely wide host range. The use of entomopathogenic fungi constitutes a promising approach with potential applications in integrated pest management. Furthermore, developing insect control methods can involve the use of fungal machinery to cause metabolic disruption, which may increase its effectiveness by impairing insect development. Insect species, including C. capitata, relies on reproduction potential, nutrient reserves, metabolic activities, and immune response for survival. Accordingly, the purpose of this study was to investigate the impacts of the entomopathogenic fungus Purpureocillium lilacinum on C. capitata pre-mortality. The medfly V8 strain was subjected to laboratory bioassays, which consisted on determining the virulence of P. lilacinum on the medfly. Purpureocillium lilacinum was applied on abdominal topical of 5-day-old males and females. Following the fungal inoculation, we have confirmed (i) a significant increase in tissue sugar content, (ii) a significant decrease in carbohydrase activities, digestive glycosyl hydrolase, and proteinase activities in whole midguts of treated flies, (iii) the antimicrobial peptides (AMPs) genes expression profile was significantly influenced by fly gender, fly status (virgin, mature, and mated), and time after infection, but infection itself had no discernible impact on the AMPs for the genes that were examined. This study provides the first insight into how P. lilacinum could affect C. capitata physiological mechanisms and provides the foundation for considering P. lilacinum as a novel, promising biocontrol agent.
Collapse
Affiliation(s)
- Wafa Djobbi
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunis, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunis, Tunisia
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR 203, Villeurbanne, France
| | - Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunis, Tunisia
| | - Hubert Charles
- Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR 203, Villeurbanne, France
| | - Justin Maire
- Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR 203, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR 203, Villeurbanne, France
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunis, Tunisia
| | - Salma Fadhl
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Ariana, Tunis, Tunisia
| | - Abdelaziz Heddi
- Univ Lyon, INRAE, INSA-Lyon, BF2i, UMR 203, Villeurbanne, France
| | - Ameur Cherif
- University of Manouba, LR11-ES31 Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Sidi Thabet Biotechpole, Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
8
|
Dho M, Candian V, Tedeschi R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics (Basel) 2023; 12:952. [PMID: 37370271 DOI: 10.3390/antibiotics12060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Several insects are known as vectors of a wide range of animal and human pathogens causing various diseases. However, they are also a source of different substances, such as the Antimicrobial Peptides (AMPs), which can be employed in the development of natural bioactive compounds for medical, veterinary and agricultural applications. It is well known that AMP activity, in contrast to most classical antibiotics, does not lead to the development of natural bacterial resistance, or at least the frequency of resistance is considered to be low. Therefore, there is a strong interest in assessing the efficacy of the various peptides known to date, identifying new compounds and evaluating possible solutions in order to increase their production. Moreover, implementing AMP modulation in insect rearing could preserve insect health in large-scale production. This review describes the current knowledge on insect AMPs, presenting the validated ones for the different insect orders. A brief description of their mechanism of action is reported with focus on proposed applications. The possible effects of insect diet on AMP translation and synthesis have been discussed.
Collapse
Affiliation(s)
- Matteo Dho
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
9
|
Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol 2023; 13:1112278. [PMID: 36699674 PMCID: PMC9868318 DOI: 10.3389/fphys.2022.1112278] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Threatening the global community is a wide variety of potential threats, most notably invasive pest species. Invasive pest species are non-native organisms that humans have either accidentally or intentionally spread to new regions. One of the most effective and first lines of control strategies for controlling pests is the application of insecticides. These toxic chemicals are employed to get rid of pests, but they pose great risks to people, animals, and plants. Pesticides are heavily used in managing invasive pests in the current era. Due to the overuse of synthetic chemicals, numerous invasive species have already developed resistance. The resistance development is the main reason for the failure to manage the invasive species. Developing pesticide resistance management techniques necessitates a thorough understanding of the mechanisms through which insects acquire insecticide resistance. Insects use a variety of behavioral, biochemical, physiological, genetic, and metabolic methods to deal with toxic chemicals, which can lead to resistance through continuous overexpression of detoxifying enzymes. An overabundance of enzymes causes metabolic resistance, detoxifying pesticides and rendering them ineffective against pests. A key factor in the development of metabolic resistance is the amplification of certain metabolic enzymes, specifically esterases, Glutathione S-transferase, Cytochromes p450 monooxygenase, and hydrolyses. Additionally, insect guts offer unique habitats for microbial colonization, and gut bacteria may serve their hosts a variety of useful services. Most importantly, the detoxification of insecticides leads to resistance development. The complete knowledge of invasive pest species and their mechanisms of resistance development could be very helpful in coping with the challenges and effectively developing effective strategies for the control of invasive species. Integrated Pest Management is particularly effective at lowering the risk of chemical and environmental contaminants and the resulting health issues, and it may also offer the most effective ways to control insect pests.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Ruidong Fan
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Hira Naz
- Research and Development Centre for Fine Chemicals, National Key Laboratory of Green Pesticides, Guizhou University, Guiyang, China
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
| | - Yiming Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
- International Jointed Institute of Plant Microbial Ecology and Resource Management in Guizhou University, Ministry of Agriculture, China & China Association of Agricultural Science Societies, Guizhou University, Guiyang, China
- Guizhou-Europe Environmental Biotechnology and Agricultural Informatics Oversea Innovation Center in Guizhou University, Guizhou Provincial Science and Technology Department, Guiyang, China
- College of Science, Tibet University, Lhasa, China
| |
Collapse
|
10
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
11
|
Querejeta M, Hervé V, Perdereau E, Marchal L, Herniou EA, Boyer S, Giron D. Changes in Bacterial Community Structure Across the Different Life Stages of Black Soldier Fly (Hermetia illucens). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02146-x. [PMID: 36434303 DOI: 10.1007/s00248-022-02146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The digestive capacity of organic compounds by the black soldier fly (BSF, Hermetia illucens, Diptera: Stratiomyidae, Linnaeus, 1758) is known to rely on complex larva-microbiota interactions. Although insect development is known to be a driver of changes of bacterial communities, the fluctuations along BSF life cycle in terms of composition and diversity of bacterial communities are still unknown. In this work, we used a metabarcoding approach to explore the differences in bacterial diversity along all four BSF developmental stages: eggs, larvae, pupae, and adult. We detected not only significant differences in bacterial community composition and species richness along the development of BSF, but also nine prevalent amplicon single variants (ASVs) forming the core microbiota. Out of the 2010 ASVs identified, 160 were significantly more abundant in one of the life stages. Moreover, using PICRUSt2, we inferred 27 potential metabolic pathways differentially used among the BSF life cycle. This distribution of metabolic pathways was congruent with the bacterial taxonomic distribution among life stages, demonstrating that the functional requirements of each phase of development are drivers of bacterial composition and diversity. This study provides a better understanding of the different metabolic processes occurring during BSF development and their links to changes in bacterial taxa. This information has important implications for improving bio-waste processing in such an economically important insect species.
Collapse
Affiliation(s)
- Marina Querejeta
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France.
- Department of Functional Biology, University of Oviedo, Asturias, Spain.
| | - Vincent Hervé
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Elfie Perdereau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Lorène Marchal
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| |
Collapse
|
12
|
Jaffar S, Lu Y. Toxicity of Some Essential Oils Constituents against Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). INSECTS 2022; 13:954. [PMID: 36292900 PMCID: PMC9603982 DOI: 10.3390/insects13100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The massive use of synthetic pesticides to manage agricultural pests results in environmental pollution and health hazards. The secondary plant metabolites, which are majorly dominated by terpenoids, have the potential to be developed into novel alternatives to synthetic chemicals. Therefore, in our current investigation, six majorly dominated essential oil constituents were evaluated for their toxicity against adults and immature stages of oriental fruit flies, Bactrocera dorsalis, a worldwide fruit pest. The results indicated that carvacrol was the most toxic essential oil constituent (EOC) to adult flies, with LC50 of 19.48 mg/mL via fumigant assay, followed by thujone 75% mortality via ingestion toxicity test against adult fruit flies. Similarly, when larvae were dipped in different concentrations of EOCs, carvacrol appeared as the most toxic EOC with the lowest LC50 (29.12 mg/mL), followed by (-)-alpha-pinene (26.54 mg/mL) and (R)-(+)-limonene (29.12 mg/mL). In the oviposition deterrence tests, no egg was observed on oranges seedlings treated with 5% of each EOC (100% repellency). Regarding the repellency assay, a significantly higher number of flies (77%) were repelled from the Y-tube olfactometer arm containing (-)-alpha-pinene, followed by carvacrol (76%). Our results showed that the selected essential oil constituent has the potential to be developed as an alternative to synthetic pesticides against B. dorsalis. However, further research is required to assess the activities of these EOCs under open-field conditions.
Collapse
|
13
|
Mosquera KD, Khan Z, Wondwosen B, Alsanius B, Hill SR, Ignell R, Lorenzo MG. Odor-mediated response of gravid Aedes aegypti to mosquito-associated symbiotic bacteria. Acta Trop 2022; 237:106730. [PMID: 36280207 DOI: 10.1016/j.actatropica.2022.106730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Complex oviposition decisions allow gravid Aedes aegypti mosquitoes to select suitable sites for egg-laying to increase the probability that their progeny will thrive. The bacterial communities present in larval niches influence mosquito oviposition behavior, and gravid mosquitoes transmit key microbial associates to breeding sites during oviposition. Our study evaluated whether symbiotic Klebsiella sp., which are strongly associated with mosquitoes, emit volatiles that affect mosquito oviposition decisions. Dual-choice behavioral assays demonstrated that volatile organic compounds emitted by Klebsiella sp. induce a preference in oviposition decisions by Ae. aegypti. Bacterial headspace volatiles were sampled by solid-phase microextraction, and subsequent combined gas chromatography and electroantennogram detection analysis, revealed that the antennae of gravid females detect two compounds present in the Klebsiella sp. headspace. These compounds were identified by gas chromatography and mass spectrometry as 2-ethyl hexanol and 2,4-di‑tert-butylphenol. The binary blend of these compounds elicited a dose-dependent egg-laying preference by gravid mosquitoes. We propose that bacterial symbionts, which are associated with gravid mosquitoes and may be transferred to aquatic habitats during egg-laying, together with their volatiles act as oviposition cues indicating the suitability of active breeding sites to conspecific females.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Zaid Khan
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Betelehem Wondwosen
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Beatrix Alsanius
- Microbial Horticulture Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon R Hill
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Gut bacteria induce oviposition preference through ovipositor recognition in fruit fly. Commun Biol 2022; 5:973. [PMID: 36109578 PMCID: PMC9477868 DOI: 10.1038/s42003-022-03947-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractGut bacteria play important roles in insect life cycle, and various routes can be used by insects to effectively transmit their gut bacteria. However, it is unclear if the gut bacteria can spread by actively attracting their insect hosts, and the recognition mechanisms of host insects are poorly understood. Here, we explore chemical interactions between Bactrocera dorsalis and its gut bacterium Citrobacter sp. (CF-BD). We found that CF-BD could affect the development of host ovaries and could be vertically transmitted via host oviposition. CF-BD could attract B. dorsalis to lay eggs by producing 3-hexenyl acetate (3-HA) in fruits that were hosts of B. dorsalis. Furthermore, we found that B. dorsalis could directly recognize CF-BD in fruits with their ovipositors in which olfactory genes were expressed to bind 3-HA. This work reports an important mechanism concerning the active spread of gut bacteria in their host insects.
Collapse
|
15
|
Ardburi W, Tangkawanit U. Effect of Larval Diets on House Fly (Diptera: Muscidae) Production and Host Suitability for a Pupal House Fly Parasitoid (Spalangia gemina) (Hymenoptera: Pteromalidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1376-1381. [PMID: 35640633 DOI: 10.1093/jme/tjac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 06/15/2023]
Abstract
A larval medium for house fly (Musca domestica L.) suitable for house fly parasitoid production was developed from locally available and inexpensive food ingredients. Biological parameters and life table parameters were estimated for house flies treated with five different diets. It was found that percentage survival of 1st-3rd instar larvae of house fly, percentage of pupation, percentage of hatching adults, growth index, and life table parameters (net reproductive rate [R0] the cohort generation time [T], intrinsic rate of increase [r], and finite rate of increase [λ]) were significantly highest on larvae produced on diet 5 (composed of rice barn and chicken feed). Diet composition and performance of house fly larvae in larval medium are discussed, based on the results. The results of Spalangia gemina Bouček (Hymenoptera, Pteromalidae) parasitization on house fly pupae revealed that the number of total parasitized pupa and number of parasitoids hatched from pupa reared with diet 5 (rice bran and chicken feed) were greater than with diet 1 (rice bran, powdered milk, dry yeast, fish meal, soybean meal, and chicken feed). Additionally, S. gemina offspring from diet 5 treatment had a higher proportion of females. Our results indicated that pupal size resulting from larval diet was an important factor for parasitization.
Collapse
Affiliation(s)
- Waranya Ardburi
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Mueang 40002, Thailand
| | - Ubon Tangkawanit
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Mueang 40002, Thailand
| |
Collapse
|
16
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
18
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
19
|
Fu J, Zeng L, Zheng L, Bai Z, Li Z, Liu L. Comparative Transcriptomic Analyses of Antibiotic-Treated and Normally Reared Bactrocera dorsalis Reveals a Possible Gut Self-Immunity Mechanism. Front Cell Dev Biol 2021; 9:647604. [PMID: 34621734 PMCID: PMC8490719 DOI: 10.3389/fcell.2021.647604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.
Collapse
Affiliation(s)
- Jiajin Fu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingyu Zeng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Linyu Zheng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenzhen Bai
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|