1
|
Dasilva MA, Andrada KFC, Torales MM, Hughes IM, Pez P, García-Martínez JC, Paraje MG. Synergistic activity of gold nanoparticles with amphotericin B on persister cells of Candida tropicalis biofilms. J Nanobiotechnology 2024; 22:254. [PMID: 38755625 PMCID: PMC11097580 DOI: 10.1186/s12951-024-02415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
AIM The antifungal activity was studied on sessile and persister cells (PCs) of Candida tropicalis biofilms of gold nanoparticles (AuNPs) stabilized with cetyltrimethylammonium bromide (CTAB-AuNPs) and those conjugated with cysteine, in combination with Amphotericin B (AmB). MATERIALS/METHODS The PC model was used and synergistic activity was tested by the checkerboard assay. Biofilms were studied by crystal violet and scanning electron microscopy. RESULTS/CONCLUSIONS After the combination of both AuNPs and AmB the biofilm biomass was reduced, with significant differences in architecture being observed with a reduced biofilm matrix. In addition, the CTAB-AuNPs-AmB combination significantly reduced PCs. Understanding how these AuNPs aid in the fight against biofilms and the development of new approaches to eradicate PCs has relevance for chronic infection treatment.
Collapse
Affiliation(s)
- M A Dasilva
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - K F Crespo Andrada
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - M Maldonado Torales
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - I Manrrique Hughes
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - P Pez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J C García-Martínez
- Facultad de Farmacia de Albacete, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, España
| | - María Gabriela Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
2
|
Mishra AK, Thakare RP, Santani BG, Yabaji SM, Dixit SK, Srivastava KK. Unlocking the enigma of phenotypic drug tolerance: Mechanisms and emerging therapeutic strategies. Biochimie 2024; 220:67-83. [PMID: 38168626 DOI: 10.1016/j.biochi.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.
Collapse
Affiliation(s)
- Alok K Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Ritesh P Thakare
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bela G Santani
- Department of Microbiology, Sant Gadge Baba Amravati University (SGBAU), Amravati, Maharashtra, India
| | - Shivraj M Yabaji
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivendra K Dixit
- Division of Medicine ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar Bareilly, Uttar Pradesh, 243122, India.
| | - Kishore K Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
3
|
Sinoca M, Maione A, Gambino E, Imparato M, Galdiero M, de Alteriis E, Galdiero E, Guida M. A Preliminary Evaluation on the Antifungal Efficacy of VT-1161 against Persister Candida albicans Cells in Vulvovaginal Candidiasis. Biomedicines 2024; 12:389. [PMID: 38397991 PMCID: PMC10887314 DOI: 10.3390/biomedicines12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Persister cells are a small fraction of the microbial population that survive lethal concentrations of antimicrobial agents. Candida albicans causes vaginal candidiasis, including recurrent vulvovaginal candidiasis, and may survive common antifungal treatments. The triazole VT-1161 is an antifungal agent that specifically targets fungal CYP51, as opposed to the human CYP enzyme. This work illustrates a new role of VT-1161 in eradicating the biofilm created from the persister cells of a primary biofilm of a clinical vaginal isolate of C. albicans. Antifungal activity was determined by the minimum inhibitory concentration (MIC), and the primary biofilm was treated with amphotericin B to obtain persister cells that were able to form a new biofilm. Results obtained using the new azole VT-1161 showed that VT-1161 not only eradicated a secondary biofilm formed from the persister-derived biofilm and counteracted the adhesion of C. albicans in vitro to human cells but also ameliorated C. albicans-induced infection in vivo in Galleria mellonella larvae, suggesting that it could be proposed as an alternative therapeutic strategy for the treatment of recurrent candidiasis.
Collapse
Affiliation(s)
- Marica Sinoca
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
| | - Edvige Gambino
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
| | - Marianna Imparato
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (M.S.); (A.M.); (E.G.); (M.I.); (E.d.A.); (M.G.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Contreras Martínez OI, Angulo Ortíz A, Santafé Patiño G. Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules 2022; 27:5808. [PMID: 36144544 PMCID: PMC9505055 DOI: 10.3390/molecules27185808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The growing increase in infections by Candida spp., non-albicans, coupled with expressed drug resistance and high mortality, especially in immunocompromised patients, have made candidemia a great challenge. The efficacy of compounds of plant origin with antifungal potential has recently been reported as an alternative to be used. Our objective was to evaluate the mechanism of the antifungal action of isoespintanol (ISO) against clinical isolates of Candida tropicalis. Microdilution assays revealed fungal growth inhibition, showing minimum inhibitory concentration (MIC) values between 326.6 and 500 µg/mL. The eradication of mature biofilms by ISO was between 20.3 and 25.8% after 1 h of exposure, being in all cases higher than the effect caused by amphotericin B (AFB), with values between 7.2 and 12.4%. Flow cytometry showed changes in the permeability of the plasma membrane, causing loss of intracellular material and osmotic balance; transmission electron microscopy (TEM) confirmed the damage to the integrity of the plasma membrane. Furthermore, ISO induced the production of intracellular reactive oxygen species (iROS). This indicates that the antifungal action of ISO is associated with damage to membrane integrity and the induction of iROS production, causing cell death.
Collapse
Affiliation(s)
| | - Alberto Angulo Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| |
Collapse
|
5
|
Maione A, La Pietra A, de Alteriis E, Mileo A, De Falco M, Guida M, Galdiero E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022; 10:microorganisms10091773. [PMID: 36144375 PMCID: PMC9501169 DOI: 10.3390/microorganisms10091773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The increased incidence of mixed infections requires that the scientific community develop novel antimicrobial molecules. Essential oils and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities and are attracting more and more attention. Therefore, the aim of this study was to evaluate myrtenol (MYR), one of the constituents commonly found in some essential oils, for its potential to inhibit biofilms alone and in combination with antimicrobial drugs against Candida auris/Klebsiella pneumoniae single and mixed biofilms. The antimicrobial activity of MYR was evaluated by determining bactericidal/fungicidal concentrations (MIC), and biofilm formation at sub-MICs was analyzed in a 96-well microtiter plate by crystal violet, XTT reduction assay, and CFU counts. The synergistic interaction between MYR and antimicrobial drugs was evaluated by the checkerboard method. The study found that MYR exhibited antimicrobial activity at high concentrations while showing efficient antibiofilm activity against single and dual biofilms. To understand the underlying mechanism by which MYR promotes single/mixed-species biofilm inhibition, we observed a significant downregulation in the expression of mrkA, FKS1, ERG11, and ALS5 genes, which are associated with bacterial motility, adhesion, and biofilm formation as well as increased ROS production, which can play an important role in the inhibition of biofilm formation. In addition, the checkerboard microdilution assay showed that MYR was strongly synergistic with both caspofungin (CAS) and meropenem (MEM) in inhibiting the growth of Candida auris/Klebsiella pneumoniae-mixed biofilms. Furthermore, the tested concentrations showed an absence of toxicity for both mammalian cells in the in vitro and in vivo Galleria mellonella models. Thus, MYR could be considered as a potential agent for the management of polymicrobial biofilms.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Alessandra La Pietra
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Aldo Mileo
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- Correspondence: (M.G.); (E.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- Correspondence: (M.G.); (E.G.)
| |
Collapse
|
6
|
da Silva MA, García-Martínez JC, Páez PL, Paraje MG. Fungicidal and antibiofilm activities of gold nanoparticles on Candida tropicalis. Nanomedicine (Lond) 2022; 17:1663-1676. [PMID: 36515357 DOI: 10.2217/nnm-2022-0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To investigate the antifungal activity of two different functionalized gold nanoparticles (AuNP), those stabilized with cetyltrimethylammonium bromide and those conjugated with cysteine, and their effects on the architecture of Candida tropicalis biofilms. Materials & methods: Biofilms were studied by crystal violet binding assay and scanning electron microscopy. We investigated the effects of AuNPs on reactive oxygen species, reactive nitrogen intermediates and enzymatic and nonenzymatic antioxidant defenses. Results/Conclusion: The fungicidal activity and cellular stress of both AuNPs affected biofilm growth through accumulation of reactive oxygen species and reactive nitrogen intermediates. However, cetyltrimethylammonium bromide-stabilized AuNPs revealed a higher redox imbalance. We correlated, for the first time, AuNP effects with the redox imbalance and alterations in the architecture of C. tropicalis biofilms.
Collapse
Affiliation(s)
- María Angel da Silva
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, X5000JJC, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Joaquín Calizto García-Martínez
- Facultad de Farmacia de Albacete, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, 02008, España
| | - Paulina Laura Páez
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Gabriela Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, X5000JJC, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Fungal Biofilms as a Valuable Target for the Discovery of Natural Products That Cope with the Resistance of Medically Important Fungi-Latest Findings. Antibiotics (Basel) 2021; 10:antibiotics10091053. [PMID: 34572635 PMCID: PMC8471798 DOI: 10.3390/antibiotics10091053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.
Collapse
|
8
|
Host-pathogen interaction between macrophage co-cultures with Staphylococcus aureus biofilms. Eur J Clin Microbiol Infect Dis 2021; 40:2563-2574. [PMID: 34312744 DOI: 10.1007/s10096-021-04306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The ability of Staphylococcus aureus to form biofilms is an important virulence factor. During the infectious process, the interaction between biofilms and immune cells is determinant; however, the properties that make biofilms resistant to the immune system are not well characterized. In order to better understand this, we evaluated the in vitro interaction of macrophages during the early stages of S. aureus biofilm formation. Biofilm formation was evaluated by crystal violet staining, light microscopy, and confocal scanning laser microscopy. Furthermore, different activation on L-arginine pathways such as nitric oxide (NO•) release and the arginase, the production of reactive oxygen species (ROS), the total oxidative stress response (OSR), and levels of cytokine liberation, were determined. Our findings show that the interaction between biofilms and macrophages results in stimuli for catabolism of L-arginine via arginase, but not for NO•, an increase of ROS production, and activation of the non-enzymatic OSR. We also observed the production of IL-6, but not of TNFα o IL-10 in these co-cultures. These results contribute to a better understanding of host-pathogen interactions and suggest that biofilms increase resistance against immune cell mechanisms, a phenomenon that could contribute to the ability of S. aureus biofilms to establish mature biofilms.
Collapse
|