1
|
Xia W, Cai Q, Wu H, Li J, Zhou Z, Huang C, Cheng B. Improve anti-biofilm efficacy of ultrasound by modulating the phase transition of exopolysaccharides. ULTRASONICS SONOCHEMISTRY 2024; 112:107100. [PMID: 39631356 DOI: 10.1016/j.ultsonch.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024]
Abstract
This study focused on the adverse sonochemical effect of ultrasound on biofilm extracellular polysaccharide and the adaptive biofilm responses for ultrasound resistance. Results showed ultrasound triggered phase transition of polysaccharides within biofilm from solation to gelation, which induced following biofilm viscoelasticity enhancement, consequential failure of biofilm removal and bacteria killing. Introducing additional cationic polysaccharide, 1.25 % chitosan, inhibited the ultrasound responsive polysaccharides gelation and biofilm viscoelasticity enhancement, exerted synergistic antibacterial (97.40 %) and antibiofilm (96.38 %) effects with 120 W ultrasound combined on S. aureus biofilm, prolonged the preservation time of milk 2.45 times longer compared with ultrasound alone. These findings indicated the possible mechanism and solution to improve ultrasound efficacy on biofilm control and bacteria suppression, exhibit the promising prospect of ultrasound combined strategy in hygiene issues of food and medical industry.
Collapse
Affiliation(s)
- Wenyang Xia
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuchen Cai
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran Wu
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Li
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chenglong Huang
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Biao Cheng
- Department of Sports Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
3
|
Silva E Carvalho I, Pratavieira S, Salvador Bagnato V, Alves F. Sonophotodynamic inactivation of Pseudomonas aeruginosa biofilm mediated by curcumin. BIOFOULING 2023; 39:606-616. [PMID: 37537876 DOI: 10.1080/08927014.2023.2241385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
The inactivation of Pseudomonas aeruginosa biofilm is a major challenge, as biofilms are less responsive to conventional treatments and responsible for persistent infections. This has led to the investigation of alternative approaches for biofilm control such as photodynamic (PDI) and sonodynamic (SDI) inactivation. The combination of them, known as Sonophotodynamic Inactivation (SPDI), has improved the effectiveness of the process. Curcumin, a well-established photosensitizer, has been identified as a potential sonosensitizer. This study evaluated the most effective combination for SPDI against P. aeruginosa biofilms in vitro, varying curcumin concentrations and ultrasound intensities. The results indicated that the inactivation was directly proportional to the curcumin concentration. Using curcumin 120 µM and 3.0 W.cm-2 of ultrasound intensity, SPDI demonstrated the highest and the best synergistic results, equivalent to 6.9 ± 2.1 logs of reduction. PDI reduced 0.7 ± 0.9 log and SDI had no effect. In conclusion, SPDI with curcumin is a promising approach for biofilm inactivation.
Collapse
Affiliation(s)
| | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, College of Engineering, TX A&M University, College Station, TX, USA
| | - Fernanda Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
4
|
Zhao Y, Bhavya ML, Patange A, Sun DW, Tiwari BK. Plasma-activated liquids for mitigating biofilms on food and food contact surfaces. Compr Rev Food Sci Food Saf 2023; 22:1654-1685. [PMID: 36861750 DOI: 10.1111/1541-4337.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.
Collapse
Affiliation(s)
- Yunlu Zhao
- Teagasc Food Research Centre, Dublin, Ireland.,Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | | | | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | |
Collapse
|
5
|
Shockwaves Increase In Vitro Resilience of Rhizopus oryzae Biofilm under Amphotericin B Treatment. Int J Mol Sci 2022; 23:ijms23169226. [PMID: 36012494 PMCID: PMC9409157 DOI: 10.3390/ijms23169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.
Collapse
|
6
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
7
|
Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int J Mol Sci 2022; 23:ijms23063209. [PMID: 35328629 PMCID: PMC8953781 DOI: 10.3390/ijms23063209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy and allied photodynamic antimicrobial chemotherapy have shown remarkable activity against bacterial pathogens in both planktonic and biofilm forms. There has been little or no resistance development against antimicrobial photodynamic therapy. Furthermore, recent developments in therapies that involve antimicrobial photodynamic therapy in combination with photothermal hyperthermia therapy, magnetic hyperthermia therapy, antibiotic chemotherapy and cold atmospheric pressure plasma therapy have shown additive and synergistic enhancement of its efficacy. This paper reviews applications of antimicrobial photodynamic therapy and non-invasive combination therapies often used with it, including sonodynamic therapy and nanozyme enhanced photodynamic therapy. The antimicrobial and antibiofilm mechanisms are discussed. This review proposes that these technologies have a great potential to overcome the bacterial resistance associated with bacterial biofilm formation.
Collapse
|
8
|
Roy J, Pandey V, Gupta I, Shekhar H. Antibacterial Sonodynamic Therapy: Current Status and Future Perspectives. ACS Biomater Sci Eng 2021; 7:5326-5338. [PMID: 34714638 DOI: 10.1021/acsbiomaterials.1c00587] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multidrug-resistant bacteria have emerged in both community and hospital settings, partly due to the misuse of antibiotics. The inventory of viable antibiotics is rapidly declining, and efforts toward discovering newer antibiotics are not yielding the desired outcomes. Therefore, alternate antibacterial therapies based on physical mechanisms such as light and ultrasound are being explored. Sonodynamic therapy (SDT) is an emerging therapeutic approach that involves exposing target tissues to a nontoxic sensitizing chemical and low-intensity ultrasound. SDT can enable site-specific cytotoxicity by producing reactive oxygen species (ROS) in response to ultrasound, which can be harnessed for treating bacterial infections. This approach can potentially be used for both superficial and deep-seated microbial infections. The majority of the sonosensitizers reported are nonpolar, exhibiting limited bioavailability and a high clearance rate in the body. Therefore, targeted delivery agents such as nanoparticle composites, liposomes, and microbubbles are being investigated. This article reviews recent developments in antibacterial sonodynamic therapy, emphasizing biophysical and chemical mechanisms, novel delivery agents, ultrasound exposure and image guidance strategies, and the challenges in the pathway to clinical translation.
Collapse
Affiliation(s)
- Jayishnu Roy
- Discipline of Biological Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Vijayalakshmi Pandey
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|