1
|
Gray HA, Biggs PJ, Midwinter AC, Rogers LE, Fayaz A, Akhter RN, Burgess SA. Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand. Microb Genom 2025; 11:001341. [PMID: 39791259 PMCID: PMC11718517 DOI: 10.1099/mgen.0.001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Holly A. Gray
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Lynn E. Rogers
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ahmed Fayaz
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rukhshana N. Akhter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Kotzamanidis C, Malousi A, Paraskeva A, Vafeas G, Giantzi V, Hatzigiannakis E, Dalampakis P, Kinigopoulou V, Vrouhakis I, Zouboulis A, Yiangou M, Zdragas A. River waters in Greece: A reservoir for clinically relevant extended-spectrum-β-lactamases-producing Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173554. [PMID: 38823724 DOI: 10.1016/j.scitotenv.2024.173554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
In the current study, the genotypic characteristics such as antimicrobial resistance and virulence genes, and plasmid replicons and phenotypic characteristics such as biofilm formation and antimicrobial resistance of 87 extended-spectrum beta-lactamase (ESBL)-producing E. coli (ESBL-Ec) isolated from 7 water bodies in northern Greece were investigated. Our data show a high prevalence (60.0 %) of ESBL-Ec in surface waters that exhibit high genetic diversity, suggesting multiple sources of their transmission into the aquatic environment. When evaluating the antimicrobial resistance of isolates, wide variation in their resistance profiles has been detected, with all isolates being multi-drug resistant (MDR). Regarding biofilm formation capacity and phylogenetic groups, the majority (54.0 %, 47/87) of ESBL-Ec were classified as no biofilm producers mainly assigned to phylogroup A (35.6 %; 31/87), followed by B2 (26.5 %; 23/87). PCR screening showed that a high proportion of the isolates tested positive for the blaCTX-M-1 group genes (69 %, 60/87), followed by blaTEM (55.2 %, 48/87), blaOXA (25.3 %, 22/87) and blaCTX-M-9 (17.2 %, 15/87). A subset of 28 ESBL-Ec strains was further investigated by applying whole genome sequencing (WGS), and among them, certain clinically significant sequence types were identified, such as ST131 and ST10. The corresponding in silico analysis predicted all these isolates as human pathogens, while a significant proportion of WGS-ESBL-Ec were assigned to extraintestinal pathogenic E. coli (ExPEC; 32.1 %), and urinary pathogenic E. coli (UPEC; 28.6 %) pathotypes. Comparative phylogenetic analysis, showed that the genomes of the ST131-O25:H4-H30 isolates are genetically linked to the human clinical strains. Here, we report for the first time the detection of a plasmid-mediated mobile colistin resistance gene in ESBL-Ec in Greece isolated from an environmental source. Overall, this study underlines the role of surface waters as a reservoir for antibiotic resistance genes and for presumptive pathogenic ESBL-Ec.
Collapse
Affiliation(s)
- Charalampos Kotzamanidis
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece.
| | - Andigoni Malousi
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Genomics and Epigenomics Translational Research Group, Center for Interdisciplinary Research and Innovation, Thessaloniki 57001, Greece
| | - Anastasia Paraskeva
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vafeas
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| | - Virginia Giantzi
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| | - Evaggelos Hatzigiannakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Paschalis Dalampakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Vasiliki Kinigopoulou
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Ioannis Vrouhakis
- Soil & Water Resources Institute, Hellenic Agricultural Organisation-DEMETER, Sindos, Central Macedonia 57400, Greece
| | - Anastasios Zouboulis
- Department of Chemistry, Division of Chemical & Industrial Technology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zdragas
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organisation-DEMETER, Campus of Thermi, Thermi 570 01, Greece
| |
Collapse
|
3
|
Mansour R, El-Dakdouki MH, Mina S. Phylogenetic group distribution and antibiotic resistance of Escherichia coli isolates in aquatic environments of a highly populated area. AIMS Microbiol 2024; 10:340-362. [PMID: 38919712 PMCID: PMC11194619 DOI: 10.3934/microbiol.2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
Background Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae including Escherichia coli (E. coli), are recognized as a global public health threat due to their multidrug-resistant (MDR) phenotypes and their rapid dissemination in aquatic environments. Nevertheless, studies investigating the prevalence and antimicrobial resistance (AMR) profile of ESBL-producing E. coli in Lebanese surface water are limited. Objective This study aimed to assess the physicochemical properties and microbial contamination load and to determine the distribution of AMR patterns of ESBL-producing E. coli in surface water samples from different sites in the North Governorate of Lebanon. Methods Water samples were collected from 25 major sites in North Lebanon. These samples were analyzed for the presence of total coliforms, E. coli, and fecal enterococci. Phenotypic and genetic characterizations were then performed for E. coli isolates to determine their resistance patterns and phylogenetic groups. Results Fifty-six samples out of 100 samples were positive for ESBL-producing E. coli, mostly harboring blaCTX-M (40/56, 71%) including blaCTX-M-15 (33/40, 82%), blaTEM gene (36/56, 64%), blaSHV (20/56, 36%), and blaOXA (16/56, 29%) including blaOXA-48 gene (11/16, 69%). Most ESBL-producing E. coli isolates belonged to the extra-intestinal pathogenic phylogroup B2 (40/56, 71.4%) while 10/56 (17.9%) belonged to the commensal phylogroup A. Conclusion Our results highlight the need to implement effective water monitoring strategies to control transmission of ESBL-producing E. coli in surface water and thus reduce the burden on human and animal health.
Collapse
Affiliation(s)
- Rosette Mansour
- Department of Biological Sciences, Faculty of Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Mohammad H. El-Dakdouki
- Department of Chemistry, Faculty of Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| |
Collapse
|
4
|
Cimen C, Noster J, Stelzer Y, Rump A, Sattler J, Berends M, Voss A, Hamprecht A. Surface water in Lower Saxony: A reservoir for multidrug-resistant Enterobacterales. One Health 2023; 17:100606. [PMID: 37583366 PMCID: PMC10424258 DOI: 10.1016/j.onehlt.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase and carbapenemase-producing Enterobacterales (ESBL-E and CPE, respectively) is a threat to modern medicine, as infections become increasingly difficult to treat. These bacteria have been detected in aquatic environments, which raises concerns about the potential spread of antibiotic resistance through water. Therefore, we investigated the occurrence of ESBL-E and CPE in surface water in Lower Saxony, Germany, using phenotypic and genotypic methods. Water samples were collected from two rivers, five water canals near farms, and 18 swimming lakes. ESBL-E and CPE were isolated from these samples using filters and selective agars. All isolates were analyzed by whole genome sequencing. Multidrug-resistant Enterobacterales were detected in 4/25 (16%) water bodies, including 1/2 rivers, 2/5 water canals and 1/18 lakes. Among all samples, isolates belonging to five different species/species complexes were detected: Escherichia coli (n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n = 3), Citrobacter braakii (n = 2), and Klebsiella pneumoniae (n = 2). Of the 21 isolates, 13 (62%) were resistant at least to 3rd generation cephalosporins and eight (38%) additionally to carbapenems. CPE isolates harbored blaKPC-2 (n = 5), blaKPC-2 and blaVIM-1 (n = 2), or blaOXA-181 (n = 1); additionally, mcr-9 was detected in one isolate. Two out of eight CPE isolates were resistant to cefiderocol and two to colistin. Resistance to 3rd generation cephalosporins was mediated by ESBL (n = 10) or AmpC (n = 3). The presence of AmpC-producing Enterobacterales, ESBL-E and CPE in northern German surface water samples is alarming and highlights the importance of aquatic environments as a potential source of MDR bacteria.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Andreas Rump
- University Institute for Medical Genetics, Klinikum Oldenburg, Oldenburg, Germany
| | - Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matthijs Berends
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
- Certe Medical Diagnostics and Advice Foundation, Department of Medical Epidemiology, Groningen, the Netherlands
| | - Andreas Voss
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Seo KW, Do KH, Lee WK. Comparative Genetic Characterization of CTX-M-Producing Escherichia coli Isolated from Humans and Pigs with Diarrhea in Korea Using Next-Generation Sequencing. Microorganisms 2023; 11:1922. [PMID: 37630482 PMCID: PMC10458018 DOI: 10.3390/microorganisms11081922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Pathogenic E. coli causes intra- and extraintestinal diseases in humans and pigs and third-generation cephalosporins are the primary option for the treatment of these diseases. The objective of this study was to investigate the characteristics and correlation between CTX-M-producing E. coli from humans and pigs regarding CTX-M-producing E. coli using next-generation sequencing and bioinformatic tools. Among the 24 CTX-M-producing E. coli, three types of CTX-M genes (CTX-M-12, CTX-M-14, and CTX-M-15) were detected in humans and four types of CTX-M genes (CTX-M-14, CTX-M-15, CTX-M-55, and CTX-M-101) were detected in pigs. A total of 24 CTX-M-producing E. coli isolates also showed the following antimicrobial resistance genes: other B-Lactam resistance gene (75.0%); aminoglycoside resistance genes (75.0%); phenicol resistance genes (70.8%); tetracycline resistance genes (70.8%); sulfonamide resistance genes (66.7%); quinolone resistance genes (62.5%); trimethoprim resistance genes (54.2%); and fosfomycin resistance genes (8.3%). FII (92.3%) and FIB (90.9%) were the most common plasmid replicon in humans and pigs, respectively. A total of thirty-eight different genes associated with virulence 24 CTX-M-producing E. coli and all isolates contained at least more than one virulence gene. A total of 24 CTX-M-producing E. coli isolates showed 15 diverse sequence types (STs): thirteen isolates from human belonged to 6 different STs, and 11 isolates from pig belonged to 9 different STs. The presence of virulence genes in E. coli together with antimicrobial resistance genes (including CTX-M genes) emphasizes the necessity of comprehensive surveillance and persistent monitoring of the food chain to avoid all types of bacterial contamination, regardless of human or pig origin.
Collapse
Affiliation(s)
- Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.-W.S.)
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.-W.S.)
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.-W.S.)
- GutBiomeTech, Cheongju 28644, Republic of Korea
| |
Collapse
|
6
|
Yoneda I, Rozanah UN, Nishiyama M, Mith H, Watanabe T. Detection and genetic analysis of Escherichia coli from Tonle Sap Lake and its tributaries in Cambodia: Spatial distribution, seasonal variation, pathogenicity, and antimicrobial resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120406. [PMID: 36252883 DOI: 10.1016/j.envpol.2022.120406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
As an indicator of fecal contamination, Escherichia coli was monitored in Tonle Sap Lake, Cambodia, and its tributaries during low- and high-water seasons, focusing on the impacts on floating villagers inhabiting boathouses. E. coli concentrations in the floating villages (3.6 × 103 and 5.7 × 103 CFU/100 mL during the low- and high-water seasons, respectively) were significantly higher than those in other lake sites (4.0 × 101 and 7.0 × 100 CFU/100 mL during the low- and high-water seasons, respectively) and rivers (3.3 × 102 and 8.9 × 102 CFU/100 mL during the low- and high-water seasons, respectively), most likely because fecal materials from the boathouses were discharged without treatment. At most of the lake sampling sites remote from the boathouses, the E. coli concentration was lower during the high-water season than that during the low-water season, due to dilution by lake water. E. coli colonies detected during monitoring were isolated for pathotyping, antimicrobial susceptibility testing, beta-lactamase gene detection, and multilocus sequencing typing (MLST). Of the 659 E. coli isolates, 101 (15.3%) were diarrheagenic E. coli (DEC). The prevalence of DEC (52.2%) in the floating villages during the low-water season was higher than that during the high-water season (4.2%) and that in other sites during both seasons (10.6-21.3%). The DEC isolates from the floating villages during the low-water season showed high antimicrobial resistance, including ampicillin (83.4%) and ciprofloxacin (83.4%), and frequently possessed a beta-lactamase gene (blaTEM) (83.4%). MLST analysis indicated that the predominant sequence type (ST) of DEC isolates from the floating villages possibly originated from humans, whereas more diverse STs were detected in isolates from other sites. We revealed the wide presence of diarrheagenic and antimicrobial-resistant E. coli in Tonle Sap Lake and identified a considerable infection risk in floating villages, especially during the low-water season.
Collapse
Affiliation(s)
- Ichiro Yoneda
- Department of Regional Environment Creation, United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3-Chome, Morioka, 020-8850, Japan.
| | - Ulya Nur Rozanah
- Department of Agricultural Microbiology, Faculty of Agriculture, Gadjah Mada University, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Masateru Nishiyama
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-8555, Japan
| | - Hasika Mith
- Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, 12156, Cambodia
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, 997-8555, Japan
| |
Collapse
|
7
|
Tacão M, Laço J, Teixeira P, Henriques I. CTX-M-Producing Bacteria Isolated from a Highly Polluted River System in Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911858. [PMID: 36231185 PMCID: PMC9565674 DOI: 10.3390/ijerph191911858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/13/2023]
Abstract
Enterobacteriaceae resistant to third-generation cephalosporins are a great concern for public health, as these are first-line drugs to treat infections. The production of carbapenemases and extended spectrum beta-lactamases (ESBLs) and/or the overexpression of AmpC β-lactamases are the main mechanisms of resistance to these antibiotics. Among the ESBLs, CTX-M β-lactamases are the most prevalent worldwide. Our aims were to determine the prevalence of cefotaxime-resistant Enterobacteriaceae along a heavily polluted river and characterize blaCTX-M carriers. River water was collected in 11 sites along the main course and tributaries, in two sampling moments. Water quality was evaluated and a collection of cefotaxime-resistant isolates was obtained. blaCTX-M carriers were characterized regarding phylogenetic affiliation, clonality, antibiotic susceptibility, gene diversity, and context. Water presented very low quality in all sites. From 147 cefotaxime-resistant isolates, 46% carried blaCTX-M and were affiliated with Escherichia, Klebsiella, Enterobacter, and Citrobacter. Molecular typing revealed clonal isolates in different sites and over the two years, suggesting survival of the strains in the river or continuous pollution inputs from the same sources. Eight variants of blaCTX-M were found, with blaCTX-M-15 being the most prevalent (52.5%). Sites with a lower water quality showed the highest resistance rates and prevalence of blaCTX-M, suggesting that river water may embody human health risks.
Collapse
Affiliation(s)
- Marta Tacão
- CESAM and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Laço
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pedro Teixeira
- CESAM and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences and CFE, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
8
|
Gomi R, Yamamoto M, Tanaka M, Matsumura Y. Chromosomal integration of blaCTX-M genes in diverse Escherichia coli isolates recovered from river water in Japan. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100144. [PMID: 35909619 PMCID: PMC9325909 DOI: 10.1016/j.crmicr.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ryota Gomi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8540, Kyoto, Japan
- Corresponding author
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, 606-8507, Kyoto, Japan
| |
Collapse
|
9
|
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Kizerwetter-Świda M, Moroz A, Olech W, Spinu M, Binek M, Rzewuska M. Trueperella pyogenes Isolates from Livestock and European Bison ( Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics (Basel) 2021; 10:380. [PMID: 33916765 PMCID: PMC8065510 DOI: 10.3390/antibiotics10040380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Determinants of tetracycline resistance in Trueperella pyogenes are still poorly known. In this study, resistance to tetracycline was investigated in 114 T. pyogenes isolates from livestock and European bison. Tetracycline minimum inhibitory concentration (MIC) was evaluated by a microdilution method, and tetracycline resistance genes were detected by PCR. To determine variants of tetW and their linkage with mobile elements, sequencing analysis was performed. Among the studied isolates, 43.0% were tetracycline resistant (MIC ≥ 8 µg/mL). The highest MIC90 of tetracycline (32 µg/mL) was noted in bovine and European bison isolates. The most prevalent determinant of tetracycline resistance was tetW (in 40.4% of isolates), while tetA(33) was detected only in 8.8% of isolates. Four variants of tetW (tetW-1, tetW-2, tetW-3, tetW-4) were recognized. The tetW-3 variant was the most frequent and was linked to the ATE-1 transposon. The tetW-2 variant, found in a swine isolate, was not previously reported in T. pyogenes. This is the first report on determinants of tetracycline resistance in T. pyogenes isolates from European bison. These findings highlight that wild animals, including wild ruminants not treated with antimicrobials, can be a reservoir of tetracycline-resistant bacteria carrying resistance determinants, which may be easily spread among pathogenic and environmental microorganisms.
Collapse
Affiliation(s)
- Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-786 Warsaw, Poland;
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Law and Ethics, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| |
Collapse
|