1
|
Sanz C, Casado M, Martinez-Landa L, Valhondo C, Amalfitano S, Di Pippo F, Levantesi C, Carrera J, Piña B. Efficient removal of antibiotic resistance genes and of enteric bacteria from reclaimed wastewater by enhanced Soil Aquifer Treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176078. [PMID: 39244046 DOI: 10.1016/j.scitotenv.2024.176078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Soil Aquifer Treatment (SAT) is a robust technology to increase groundwater recharge and to improve reclaimed water quality. SAT reduces dissolved organic carbon, contaminants of emerging concern, nutrients, and colloidal matter, including pathogen indicators, but little is known about its ability to reduce loads of antibiotic resistance genes (ARGs) from reclaimed waters. Here we test six pilot SAT systems to eliminate various biological hazards from the secondary effluents of a wastewater treatment plant (WWTP), equipped with reactive barriers (RBs) including different sorptive materials. Using flow cytometry, qPCR and 16S rRNA gene amplicon sequencing methods, we determined that all six SAT systems reduced total loads of bacteria by 80 to 95 % and of clinically relevant ARGs by 85 to 99.9 %. These efficiencies are similar to those reported for UV/oxidation or membrane-based tertiary treatments, which require much more energy and resources. The presence and composition of reactive barriers, the season of sampling (June 2020, October 2020, and September 2021), or the flow regime (continuous versus pulsating) did not affect ARG removal efficiency, although they did alter the microbial community composition. This suggests that an adequate design of the SAT reactive barriers may significantly increase their performance. Under a mechanistic point of view, we observed an ecological succession of bacterial groups, linked to the changing physical-chemical conditions along the SAT, and likely correlated to the removal of ARGs. We concluded that SAT is as cost-efficient technology able to dramatically reduce ARG loads and other biological hazards from WWTP secondary effluents.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Stefano Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome 00015, Italy
| | - Francesca Di Pippo
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome 00015, Italy
| | - Caterina Levantesi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome 00015, Italy
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| |
Collapse
|
2
|
Sabbagh EI, Calleja ML, Daffonchio D, Morán XAG. Seasonality of top-down control of bacterioplankton at two central Red Sea sites with different trophic status. Environ Microbiol 2023; 25:2002-2019. [PMID: 37286523 DOI: 10.1111/1462-2920.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = -0.62 to -0.59, p = 0.001-0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = -0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.
Collapse
Affiliation(s)
- Eman I Sabbagh
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Plank Institute for Chemistry (MPIC), Mainz, Germany
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Fourquez M, Strzepek RF, Ellwood MJ, Hassler C, Cabanes D, Eggins S, Pearce I, Deppeler S, Trull TW, Boyd PW, Bressac M. Phytoplankton Responses to Bacterially Regenerated Iron in a Southern Ocean Eddy. Microorganisms 2022; 10:microorganisms10081655. [PMID: 36014073 PMCID: PMC9413495 DOI: 10.3390/microorganisms10081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an isolated eddy respond to different dissolved Fe (DFe)/ligand inputs. We used three treatments: one that mimicked the entrainment of new DFe (Fe-NEW), another in which DFe was supplied from bacterial regeneration of particles (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chlorophyll a were observed. These responses of the phytoplankton community were best explained by the differences between the treatments in the amount of DFe recycled during the incubation (Fe-REG, 15% recycled c.f. 40% Fe-NEW, 60% Fe-NO). This additional recycling was more likely mediated by bacteria. By day 6, bacterial production was comparable between Fe-NO and Fe-NEW but was approximately two-fold higher in Fe-REG. A preferential response of phytoplankton (haptophyte-dominated) relative to high nucleic acid (HNA) bacteria was also found in the Fe-REG treatment while the relative proportion of diatoms increased faster in the Fe-NEW and Fe-NO treatments. Comparisons between light and dark incubations further confirmed the competition between picophytoplankton and HNA for DFe. Overall, our results demonstrate great versatility by microorganisms to use different Fe sources that results in highly efficient Fe recycling within surface waters. This study also encourages future research to further investigate the interactions between functional groups of microbes (e.g. HNA and cyanobacteria) to better constraint modeling in Fe and carbon biogeochemical cycles.
Collapse
Affiliation(s)
- Marion Fourquez
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UMR 110, 13288 Marseille, France
- Correspondence:
| | - Robert F. Strzepek
- Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
| | - Michael J. Ellwood
- Research School of Earth Sciences, Australian National University, Canberra 2601, Australia
| | - Christel Hassler
- Marine and Lake Biogeochemistry, Department F.-A. Forel, University of Geneva, 1205 Geneva, Switzerland
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien Cabanes
- Marine and Lake Biogeochemistry, Department F.-A. Forel, University of Geneva, 1205 Geneva, Switzerland
| | - Sam Eggins
- Research School of Earth Sciences, Australian National University, Canberra 2601, Australia
| | - Imojen Pearce
- Australian Antarctic Division (AAD), Kingston 7050, Australia
| | - Stacy Deppeler
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - Thomas W. Trull
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
- Climate Science Centre, Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart 7004, Australia
| | - Philip W. Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart 7004, Australia
| | - Matthieu Bressac
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia
- Laboratoire d’Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
4
|
Top-Down Controls of Bacterial Metabolism: A Case Study from a Temperate Freshwater Lake Ecosystem. Microorganisms 2022; 10:microorganisms10040715. [PMID: 35456766 PMCID: PMC9031129 DOI: 10.3390/microorganisms10040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
In freshwater environments, limited data exist on the impact of mortality forces (viruses and heterotrophic nanoflagellates) on bacterial growth efficiency (BGE, index of bacterial carbon metabolism) compared to resource availability. An investigation to determine the relative influence of viral lysis and flagellate predation (top-down forces) on BGE was conducted in a mesotrophic freshwater system (Lake Goule, France) with time and space. Viral abundance was significantly (p < 0.001) related to bacterial abundance by a power law function with an exponent less than 1, emphasizing that the increases in host population (bacteria) together with viruses were not proportionate. A lytic viral strategy was evident throughout the study period, with high lysis of the bacterial population (up to 60%) supported by viral production rates. Viral processes (lysis and production) that were influenced by bacterial production and heterotrophic nanoflagellate abundance had a positive impact on BGE. Estimates of BGE were variable (9.9−45.5%) due to uncoupling between two metabolic parameters—namely bacterial production and respiration. The existence of a synergistic relationship between viruses and flagellates with bacteria in Lake Goule highlighted the decisive impact of top-down agents in sustaining the bacterial carbon metabolism of non-infected population through the nature of vital resources released via mortality processes.
Collapse
|
5
|
Li R, Hu C, Wang J, Sun J, Wang Y, Jiao N, Xu D. Biogeographical Distribution and Community Assembly of Active Protistan Assemblages Along an Estuary to a Basin Transect of the Northern South China Sea. Microorganisms 2021; 9:microorganisms9020351. [PMID: 33578968 PMCID: PMC7916720 DOI: 10.3390/microorganisms9020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Marine protists are essential for globally critical biological processes, including the biogeochemical cycles of matter and energy. However, compared with their prokaryotic counterpart, it remains largely unclear how environmental factors determine the diversity and distribution of the active protistan communities on the regional scale. In the present study, the biodiversity, community composition, and potential drivers of the total, abundant, and rare protistan groups were studied using high throughput sequencing on the V9 hyper-variable regions of the small subunit ribosomal RNA (SSU rRNA) along an estuary to basin transect in the northern South China Sea. Overall, Bacillariophyta and Cercozoa were abundant in the surface water; heterotrophic protists including Spirotrichea and marine stramenopiles 3 (MAST-3) were more abundant in the subsurface waters near the heavily urbanized Pearl River estuary; Chlorophyta and Pelagophyceae were abundant at the deep chlorophyll maximum depth, while Hacrobia, Radiolaria, and Excavata were the abundant groups in the deep water. Salinity, followed by water depth, temperature, and other biological factors, were the primary factors controlling the distinct vertical and horizontal distribution of the total and abundant protists. Rare taxa were driven by water depth, followed by temperature, salinity, and the concentrations of PO43−. The active protistan communities were mainly driven by dispersal limitation, followed by drift and other ecological processes.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jianning Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430000, China;
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| |
Collapse
|