1
|
Retamal V, San Martín J, Ruíz B, Bastías RM, Sanfuentes E, Lisperguer MJ, De Gregorio T, Maspero M, Moya-Elizondo E. Assessment of Chemical and Biological Fungicides for the Control of Diplodia mutila Causing Wood Necrosis in Hazelnut. PLANTS (BASEL, SWITZERLAND) 2024; 13:2753. [PMID: 39409622 PMCID: PMC11478353 DOI: 10.3390/plants13192753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Fungal trunk disease (FTD) poses a significant threat to hazelnut (Corylus avellana L.) production worldwide. In Chile, the fungus Diplodia mutila, from the Botryosphaeriaceae family, has been frequently identified causing this disease in the Maule and Ñuble Regions. However, control measures for D. mutila remain limited. This research aimed to evaluate the effectiveness of chemical and biological fungicides against D. mutila under in vitro, controlled pot experiment, and field conditions. An in vitro screening of 30 fungicides was conducted. The effectiveness was assessed by measuring the length of vascular lesions in hazelnut branches inoculated with D. mutila mycelium disks under controlled and field conditions. Field trials were conducted in a hazelnut orchard in Ñiquén, Ñuble Region, Chile. The results showed that three biological and five chemical fungicides were selected in vitro with >31% inhibition after 14 days. In pot experiments, all fungicides reduced necrotic lesions on branches by 32% to 61%. In field experiments, the most effective systemic fungicides were fluopyram/tebuconazole, fluxapyroxad/pyraclostrobin, and tebuconazole, while the effectiveness of antagonists Pseudomonas protegens ChC7 and Bacillus subtilis QST713 varied with seasonal temperatures. Effective conventional and biological fungicides against D. mutila could be integrated into disease management programs to protect hazelnut wounds from infections.
Collapse
Affiliation(s)
- Verónica Retamal
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile; (V.R.); (J.S.M.); (B.R.); (R.M.B.)
| | - Juan San Martín
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile; (V.R.); (J.S.M.); (B.R.); (R.M.B.)
| | - Braulio Ruíz
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile; (V.R.); (J.S.M.); (B.R.); (R.M.B.)
| | - Richard M. Bastías
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile; (V.R.); (J.S.M.); (B.R.); (R.M.B.)
| | - Eugenio Sanfuentes
- Laboratorio de Patología Forestal, Facultad de Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Tommaso De Gregorio
- Agri Competence Centre, Ferrero Hazelnut Company (HCo), Senningerberg, L-2633 Luxembourg, Luxembourg; (T.D.G.); (M.M.)
| | - Matteo Maspero
- Agri Competence Centre, Ferrero Hazelnut Company (HCo), Senningerberg, L-2633 Luxembourg, Luxembourg; (T.D.G.); (M.M.)
| | - Ernesto Moya-Elizondo
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3812120, Chile; (V.R.); (J.S.M.); (B.R.); (R.M.B.)
| |
Collapse
|
2
|
Raveau R, Ilbert C, Héloir MC, Palavioux K, Pébarthé-Courrouilh A, Marzari T, Durand S, Valls-Fonayet J, Cluzet S, Adrian M, Fermaud M. Broad-Spectrum Efficacy and Modes of Action of Two Bacillus Strains against Grapevine Black Rot and Downy Mildew. J Fungi (Basel) 2024; 10:471. [PMID: 39057356 PMCID: PMC11278100 DOI: 10.3390/jof10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Black rot (Guignardia bidwellii) and downy mildew (Plasmopara viticola) are two major grapevine diseases against which the development of efficient biocontrol solutions is required in a context of sustainable viticulture. This study aimed at evaluating and comparing the efficacy and modes of action of bacterial culture supernatants from Bacillus velezensis Buz14 and B. ginsengihumi S38. Both biocontrol agents (BCA) were previously demonstrated as highly effective against Botrytis cinerea in grapevines. In semi-controlled conditions, both supernatants provided significant protection against black rot and downy mildew. They exhibited antibiosis against the pathogens by significantly decreasing G. bidwellii mycelial growth, but also the release and motility of P. viticola zoospores. They also significantly induced grapevine defences, as stilbene production. The LB medium, used for the bacterial cultures, also showed partial effects against both pathogens and induced plant defences. This is discussed in terms of choice of experimental controls when studying the biological activity of BCA supernatants. Thus, we identified two bacterial culture supernatants as new potential biocontrol products exhibiting multi-spectrum antagonist activity against different grapevine key pathogens and having a dual mode of action.
Collapse
Affiliation(s)
- Robin Raveau
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| | - Chloé Ilbert
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Karine Palavioux
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Anthony Pébarthé-Courrouilh
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
| | - Tania Marzari
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Solène Durand
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, 33140 Villenave d’Ornon, France
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, National Research Institute for Agriculture, Food and the Environment (INRAE), OENO, UMR 1366, Institute of Vine and Wine Sciences (ISVV), 33140 Villenave d’Ornon, France
| | - Marielle Adrian
- Agroécologie, National Research Institute for Agriculture, Food and the Environment (INRAE), Institut Agro Dijon, Univ. Bourgogne, 21000 Dijon, France
| | - Marc Fermaud
- National Research Institute for Agriculture, Food and the Environment (INRAE), Institute of Vine and Wine Sciences (ISVV), UMR Santé Agroécologie du VignoblE (SAVE), 71 Avenue E. Bourlaux, CS 20032, 33882 Villenave d’Ornon, France
| |
Collapse
|
3
|
Natsiopoulos D, Topalidou E, Mantzoukas S, Eliopoulos PA. Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens 2024; 13:548. [PMID: 39057775 PMCID: PMC11279820 DOI: 10.3390/pathogens13070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The fungus Trichoderma is widely regarded as the most common fungal biocontrol agent for plant health management. More than 25 Trichoderma species have been extensively studied and have demonstrated significant potential in inhibiting not only phytopathogen growth but also insect pest infestations. In addition to their use as biopesticides, there is increasing evidence that several Trichoderma species can function as fungal endophytes by colonizing the tissues of specific plants. This colonization enhances a plant's growth and improves its tolerance to abiotic and biotic stresses. In recent decades, there has been a proliferation of literature on the role of Trichoderma endophytes in crop protection. Although the mechanisms underlying plant-fungal endophyte interactions are not yet fully understood, several studies have suggested their potential application in agriculture, particularly in the mitigation of plant pests and diseases. This review focuses on the diversity of Trichoderma endophytic strains and their potential use in controlling specific diseases and pests of crop plants. Trichoderma endophytes are considered a potential solution to reduce production costs and environmental impact by decreasing reliance on agrochemicals.
Collapse
Affiliation(s)
- Dimitrios Natsiopoulos
- Plant Health Management Lab, Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Eleni Topalidou
- Hellenic Agricultural Organization DIMITRA, Forest Research Institute, 57006 Thessaloniki, Greece;
| | | | - Panagiotis A. Eliopoulos
- Plant Health Management Lab, Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
4
|
Kenfaoui J, Amiri S, Goura K, Radouane N, Mennani M, Belabess Z, Tahiri A, Fontaine F, Barka EA, Ghadraoui LE, Lahlali R. Uncovering the hidden diversity of fungi associated with grapevine trunk diseases in the Moroccan vineyards. TROPICAL PLANT PATHOLOGY 2024; 49:662-688. [DOI: 10.1007/s40858-024-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/22/2024] [Indexed: 01/05/2025]
|
5
|
Liu C, Zhang L, Li H, He X, Dong J, Qiu B. Assessing the biodiversity of rhizosphere and endophytic fungi in Knoxia valerianoides under continuous cropping conditions. BMC Microbiol 2024; 24:195. [PMID: 38849736 PMCID: PMC11157913 DOI: 10.1186/s12866-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.
Collapse
Affiliation(s)
- Chunju Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Heng Li
- R&D center of Yunnan Yuntianhua Co., Ltd, Kunming, 650228, China
| | - Xiahong He
- Southwest Forestry University, Kunming, 650244, China.
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Bin Qiu
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
6
|
Argüelles-Moyao A, Ángeles-Argáiz R, Garibay-Orijel R, Pacheco-Aguilar JR. Isolation and Enzymatic Characterization of Fungal Strains from Grapevines with Grapevine Trunk Diseases Symptoms in Central Mexico. Curr Microbiol 2024; 81:200. [PMID: 38822158 DOI: 10.1007/s00284-024-03709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/21/2024] [Indexed: 06/02/2024]
Abstract
Grapevine production is economically indispensable for the global wine industry. Currently, Mexico cultivates grapevines across approximately 28 500 hectares, ranking as the 26th largest producer worldwide. Given its significance, early detection of plant diseases' causal agents is crucial for preventing outbreaks. Consequently, our study aimed to identify fungal strains in grapevines exhibiting trunk disease symptoms and assess their enzymatic capabilities as indicators of their phytopathogenic potential. We collected plant cultivars, including Malbec, Shiraz, and Tempranillo, from Querétaro, Mexico. In the laboratory, we superficially removed the plant bark to prevent external contamination. Subsequently, the sample was superficially disinfected, and sawdust was generated from the symptomatic tissue. Cultivable fungal strains were isolated using aseptic techniques from the recovered sawdust. Colonies were grown on PDA and identified through a combination of microscopy and DNA-sequencing of the ITS and LSU nrDNA regions, coupled with a BLASTn search in the GenBank database. We evaluated the strains' qualitative ability to degrade cellulose, starch, and lignin using specific media and stains. Using culture morphology and DNA-sequencing, 13 species in seven genera were determined: Acremonium, Aspergillus, Cladosporium, Dydimella, Fusarium, Sarocladium, and Quambalaria. Some isolated strains were able to degrade cellulose or lignin, or starch. These results constitute the first report of these species community in the Americas. Using culture-dependent and DNA-sequencing tools allows the detection of fungal strains to continue monitoring for early prevention of the GTD.
Collapse
Affiliation(s)
- Andrés Argüelles-Moyao
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, Col. Las campanas, C. P. 76010, Querétaro, Mexico.
| | - Rodolfo Ángeles-Argáiz
- Red Manejo Biotecnológico de Recursos, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - Roberto Garibay-Orijel
- Laboratorio de Sistemática, Ecología y Aprovechamiento de Hongos Ectomicorrízicos, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. Del., C.P. 04510, Coyoacán, CDMX, Mexico
| | - Juan-Ramiro Pacheco-Aguilar
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, Col. Las campanas, C. P. 76010, Querétaro, Mexico.
| |
Collapse
|
7
|
Zanfaño L, Carro-Huerga G, Rodríguez-González Á, Mayo-Prieto S, Cardoza RE, Gutiérrez S, Casquero PA. Trichoderma carraovejensis: a new species from vineyard ecosystem with biocontrol abilities against grapevine trunk disease pathogens and ecological adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1388841. [PMID: 38835860 PMCID: PMC11148300 DOI: 10.3389/fpls.2024.1388841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.
Collapse
Affiliation(s)
- Laura Zanfaño
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Guzmán Carro-Huerga
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Álvaro Rodríguez-González
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Sara Mayo-Prieto
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| | - Rosa E Cardoza
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Santiago Gutiérrez
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
- Area of Microbiology, University School of Agricultural Engineers, Universidad de León, Ponferrada, Spain
| | - Pedro A Casquero
- Research Group of Engineering and Sustainable Agriculture, Natural Resources Institute, Universidad de León, León, Spain
| |
Collapse
|
8
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
9
|
Holkar SK, Ghotgalkar PS, Markad HN, Bhanbhane VC, Saha S, Banerjee K. Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases. Curr Microbiol 2024; 81:116. [PMID: 38489076 DOI: 10.1007/s00284-024-03635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024]
Abstract
Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host-pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.
Collapse
Affiliation(s)
| | | | | | | | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Kaushik Banerjee
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| |
Collapse
|
10
|
Larach A, Vega-Celedón P, Castillo-Novales D, Tapia L, Cuneo I, Cádiz F, Seeger M, Besoain X. Diplodia seriata Biocontrol Is Altered via Temperature and the Control of Bacteria. Microorganisms 2024; 12:350. [PMID: 38399754 PMCID: PMC10892200 DOI: 10.3390/microorganisms12020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Grapevine trunk diseases (GTDs) attack the vine's wood, devastating vineyards worldwide. Chile is the world's fourth-largest wine exporter, and Cabernet Sauvignon is one of the most economically important red wine varieties. Botryosphaeria dieback is an important GTD, and Diplodia seriata is one of the main pathogenic species. Biocontrol studies of these pathogens are commonly carried out at different incubation times but at a single temperature. This study aimed to evaluate the biocontrol effect of Chilean PGPB and grapevine endophytic bacteria against D. seriata at different temperatures. We analyzed the biocontrol effect of Pseudomonas sp. GcR15a, Pseudomonas sp. AMCR2b and Rhodococcus sp. PU4, with three D. seriata isolates (PUCV 2120, PUCV 2142 and PUCV 2183) at 8, 22 and 35 °C. Two dual-culture antagonism methods (agar plug diffusion and double plate) were used to evaluate the in vitro effect, and an in vivo test was performed with Cabernet Sauvignon cuttings. In vitro, the greatest inhibitions were obtained using the agar plug diffusion method and at a temperature of 8 °C, where Rhodococcus sp. PU4 obtains a 65% control (average) and Pseudomonas sp. GcR15a a 57% average. At 22 °C, only strains of Pseudomonas sp. show control. At 35 °C, one Pseudomonas strain shows the highest control (38%), on average, similar to tebuconazole (33%), and then Rhodococcus sp. (30%). In vivo, a biocontrol effect is observed against two D. seriata isolates, while the PUCV 2142 proves to be more resistant to control. The biocontrol ability at low temperatures is promising for effective control in the field, where infections occur primarily in winter.
Collapse
Affiliation(s)
- Alejandra Larach
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Diyanira Castillo-Novales
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Lorena Tapia
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Italo Cuneo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Fabiola Cádiz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
11
|
Testempasis SI, Markakis EA, Tavlaki GI, Soultatos SK, Tsoukas C, Gkizi D, Tzima AK, Paplomatas E, Karaoglanidis GS. Grapevine Trunk Diseases in Greece: Disease Incidence and Fungi Involved in Discrete Geographical Zones and Varieties. J Fungi (Basel) 2023; 10:2. [PMID: 38276018 PMCID: PMC10817465 DOI: 10.3390/jof10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.8S rRNA gene-ITS sequencing) analyses revealed that isolates belonged to 35 distinct fungal genera, including well-known (e.g., Botryosphaeria sp., Diaporthe spp., Eutypa sp., Diplodia sp., Fomitiporia sp., Phaeoacremonium spp., Phaeomoniella sp.) and lesser-known (e.g., Neosetophoma sp., Seimatosporium sp., Didymosphaeria sp., Kalmusia sp.) grapevine wood inhabitants. The GTDs-inducing population structure differed significantly among the discrete geographical zones. Phaeomoniella chlamydospora (26.62%, n = 70), Diaporthe spp. (18.25%, n = 48) and F. mediterranea (10.27%, n = 27) were the most prevalent in Heraklion, whereas D. seriata, Alternaria spp., P. chlamydospora and Fusarium spp. were predominant in Nemea (central Greece). In Amyntaio and Kavala (northern Greece), D. seriata was the most frequently isolated species (>50% frequency). Multi-genes (rDNA-ITS, LSU, tef1-α, tub2, act) sequencing of selected isolates, followed by pathogenicity tests, revealed that Neosetophoma italica, Seimatosporium vitis, Didymosphaeria variabile and Kalmusia variispora caused wood infection, with the former being the most virulent. To the best of our knowledge, this is the first report of N. italica associated with GTDs worldwide. This is also the first record of K. variispora, S. vitis and D. variabile associated with wood infection of grapevine in Greece. The potential associations of disease indices with vine age, cultivar, GTD-associated population structure and the prevailing meteorological conditions in different viticultural zones in Greece are presented and discussed.
Collapse
Affiliation(s)
- Stefanos I. Testempasis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.I.T.); (G.S.K.)
| | - Emmanouil A. Markakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, 32 Kastorias Street, Mesa Katsabas, 71307 Heraklion, Greece; (G.I.T.); (S.K.S.)
- Laboratory of Plant Pathology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004 Heraklion, Greece
| | - Georgia I. Tavlaki
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, 32 Kastorias Street, Mesa Katsabas, 71307 Heraklion, Greece; (G.I.T.); (S.K.S.)
| | - Stefanos K. Soultatos
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization—DIMITRA, 32 Kastorias Street, Mesa Katsabas, 71307 Heraklion, Greece; (G.I.T.); (S.K.S.)
- Laboratory of Plant Pathology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos, 71004 Heraklion, Greece
| | - Christos Tsoukas
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece; (C.T.); (A.K.T.); (E.P.)
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Ag. Spyridonos 28, 12243 Athens, Greece;
| | - Aliki K. Tzima
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece; (C.T.); (A.K.T.); (E.P.)
| | - Epameinondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece; (C.T.); (A.K.T.); (E.P.)
| | - Georgios S. Karaoglanidis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.I.T.); (G.S.K.)
| |
Collapse
|
12
|
Mannerucci F, D’Ambrosio G, Regina N, Schiavone D, Bruno GL. New Potential Biological Limiters of the Main Esca-Associated Fungi in Grapevine. Microorganisms 2023; 11:2099. [PMID: 37630659 PMCID: PMC10459360 DOI: 10.3390/microorganisms11082099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The strains Trichoderma harzianum TH07.1-NC (TH), Aphanocladium album MX95 (AA), Pleurotus eryngii AL142PE (PE) and Pleurotus ostreatus ALPO (PO) were tested as biological limiters against Fomitiporia mediterranea Fme22.12 (FM), Phaeoacremonium minimum Pm22.53 (PM) and Phaeomoniella chlamydospora Pc22.65 (PC). Pathogens were obtained from naturally Esca-affected 'Nero di Troia' vines cropped in Grumo Appula (Puglia region, Southern Italy). The antagonistic activity of each challenge organism was verified in a dual culture. TH and PO completely overgrew the three pathogens. Partial replacement characterized PE-FM, PE-PM, PE-PC and AA-PC interactions. Deadlock at mycelial contact was observed in AA-FM and AA-PM cultures. The calculated antagonism index (AI) indicated TH and PE as moderately active antagonists (10 < AI < 15), while AA and PO were weakly active (AI < 10). The maximum value of the re-isolation index (s) was associated with deadlock among AA-PM, AA-PC and PE-FM dual cultures. The tested biological limiters were always re-isolated when PO and TH completely replaced the three tested pathogens. TH and AA confirmed their efficiencies as biological limiters when inoculated on detached canes of 'Nero di Troia' in dual combination with FM, PC and PM. Nevertheless, additional experiments should be performed for a solid conclusion, along with validation experiments in the field.
Collapse
Affiliation(s)
| | | | | | | | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (F.M.); (D.S.)
| |
Collapse
|
13
|
Mesguida O, Haidar R, Yacoub A, Dreux-Zigha A, Berthon JY, Guyoneaud R, Attard E, Rey P. Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. J Fungi (Basel) 2023; 9:638. [PMID: 37367574 DOI: 10.3390/jof9060638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are currently among the most important health challenges for viticulture in the world. Esca, Botryosphaeria dieback, and Eutypa dieback are the most current GTDs caused by fungi in mature vineyards. Their incidence has increased over the last two decades, mainly after the ban of sodium arsenate, carbendazim, and benomyl in the early 2000s. Since then, considerable efforts have been made to find alternative approaches to manage these diseases and limit their propagation. Biocontrol is a sustainable approach to fight against GTD-associated fungi and several microbiological control agents have been tested against at least one of the pathogens involved in these diseases. In this review, we provide an overview of the pathogens responsible, the various potential biocontrol microorganisms selected and used, and their origins, mechanisms of action, and efficiency in various experiments carried out in vitro, in greenhouses, and/or in vineyards. Lastly, we discuss the advantages and limitations of these approaches to protect grapevines against GTDs, as well as the future perspectives for their improvement.
Collapse
Affiliation(s)
- Ouiza Mesguida
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- GreenCell: Biopôle Clermont-Limagne, 63360 Saint Beauzire, France
| | - Rana Haidar
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Amira Yacoub
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | | | | | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Eléonore Attard
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
| |
Collapse
|
14
|
Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. Breeding toward improved ecological plant-microbiome interactions. TRENDS IN PLANT SCIENCE 2022; 27:1134-1143. [PMID: 35803843 DOI: 10.1016/j.tplants.2022.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Domestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario. Here we discuss the exploitation of customized synthetic microbial communities in agricultural systems to develop more sustainable breeding strategies based on the implementation of multiple interactions between plants and their beneficial associated microorganisms.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Loredana Moffa
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
| | - Raffaella Balestrini
- National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy.
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| |
Collapse
|
15
|
Travadon R, Lawrence DP, Moyer MM, Fujiyoshi PT, Baumgartner K. Fungal species associated with grapevine trunk diseases in Washington wine grapes and California table grapes, with novelties in the genera Cadophora, Cytospora, and Sporocadus. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1018140. [PMID: 37746176 PMCID: PMC10512239 DOI: 10.3389/ffunb.2022.1018140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 09/26/2023]
Abstract
Grapevine trunk diseases cause serious economic losses to grape growers worldwide. The identification of the causal fungi is critical to implementing appropriate management strategies. Through a culture-based approach, we identified the fungal species composition associated with symptomatic grapevines from wine grapes in southeastern Washington and table grapes in the southern San Joaquin Valley of California, two regions with contrasting winter climates. Species were confirmed through molecular identification, sequencing two to six gene regions per isolate. Multilocus phylogenetic analyses were used to identify novel species. We identified 36 species from 112 isolates, with a combination of species that are new to science, are known causal fungi of grapevine trunk diseases, or are known causal fungi of diseases of other woody plants. The novel species Cadophora columbiana, Cytospora macropycnidia, Cytospora yakimana, and Sporocadus incarnatus are formally described and introduced, six species are newly reported from North America, and grape is reported as a new host for three species. Six species were shared between the two regions: Cytospora viticola, Diatrype stigma, Diplodia seriata, Kalmusia variispora, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Dominating the fungal community in Washington wine grape vineyards were species in the fungal families Diatrypaceae, Cytosporaceae and Sporocadaceae, whereas in California table grape vineyards, the dominant species were in the families Diatrypaceae, Togniniaceae, Phaeomoniellaceae and Hymenochaetaceae. Pathogenicity tests demonstrated that 10 isolates caused wood discoloration similar to symptomatic wood from which they were originally isolated. Growth rates at temperatures from 5 to 35°C of 10 isolates per region, suggest that adaptation to local climate might explain their distribution.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Michelle M. Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Phillip T. Fujiyoshi
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
16
|
Geiger A, Karácsony Z, Geml J, Váczy KZ. Mycoparasitism capability and growth inhibition activity of Clonostachys rosea isolates against fungal pathogens of grapevine trunk diseases suggest potential for biocontrol. PLoS One 2022; 17:e0273985. [PMID: 36067200 PMCID: PMC9447919 DOI: 10.1371/journal.pone.0273985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Abstract
The present study aimed to examine the capability of Clonostachys rosea isolates as a biological control agent against grapevine trunk diseases pathogens. Five C. rosea and 174 pathogenic fungal strains were isolated from grafted grapevines and subjected to in vitro confrontation tests. Efficient antagonism was observed against Eutypa lata and Phaeomoniella chlamydospora while mycoparasitism was observed to the pathogens of Botryosphaeria dothidea and Diaporthe spp. pathogens in in vitro dual culture assays. The conidia production of the C. rosea isolates were also measured on PDA plates. One isolate (19B/1) with high antagonistic capabilities and efficient conidia production was selected for in planta confrontation tests by mixing its conidia with the soil of Cabernet sauvignon grapevine cuttings artificially infected with B. dothidea, E. lata and P. chlamydospora. The length and/or the incidence of necrotic lesions caused by E. lata and P. chlamydospora at the inoculation point were significantly decreased after a three months incubation in the greenhouse on cuttings planted in soils inoculated with the conidia of strain 19B/1, while symptom incidence and severity were unaffected in the case of the pathogen B. dothidea. Based on the above results, we consider C. rosea a promising biological control agent against some grapevine trunk diseases.
Collapse
Affiliation(s)
- Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zoltán Karácsony
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- * E-mail:
| |
Collapse
|
17
|
Protective Effects of Filtrates and Extracts from Fungal Endophytes on Phytophthora cinnamomi in Lupinus luteus. PLANTS 2022; 11:plants11111455. [PMID: 35684227 PMCID: PMC9182999 DOI: 10.3390/plants11111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Fungal endophytes have been found to protect their hosts against multiple fungal pathogens. Frequently, the secondary metabolites produced by the endophyte are responsible for antifungal activity. To develop new bio-products that are more environmentally friendly than synthetic pesticides against Phytophthora cinnamomi, a serious pathogen of many plant species, the antifungal activity of filtrates or extracts from four endophytes was evaluated in different in vitro tests and in plants of Lupinus luteus. In the dual culture assays, the filtrate of one of the endophytes (Drechslera biseptata) completely inhibited the mycelial growth of the pathogen. Moreover, it showed a very low minimal inhibitory concentration (MIC). Epicoccum nigrum, an endophyte that also showed high inhibitory activity and a low MIC against P. cinnamomi in those two experiments, provided a clear growth promotion effect when the extracts were applied to L. luteus seedlings. The extract of Fusarium avenaceum also manifested such a promotion effect and was the most effective in reducing the disease severity caused by the pathogen in lupine plants (73% reduction). Results demonstrated the inhibitory activity of the filtrates or extracts of these endophytes against P. cinnamomi. A better insight into the mechanisms involved may be gained by isolating and identifying the metabolites conferring this inhibitory effect against this oomycete pathogen.
Collapse
|
18
|
Hot Water Treatment Causes Lasting Alteration to the Grapevine (Vitis vinifera L.) Mycobiome and Reduces Pathogenic Species Causing Grapevine Trunk Diseases. J Fungi (Basel) 2022; 8:jof8050485. [PMID: 35628741 PMCID: PMC9144887 DOI: 10.3390/jof8050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
The effective management of grapevine trunk diseases (GTDs) is an ongoing challenge. Hot water treatment (HWT) is an environmentally friendly and economically viable option; however, the short-term effects of HWT on grapevine (Vitis vinifera L.) health and production are not fully understood. The aim of this study was to compare the effects of HWT on plant growth and fungal community structure in nursery stock until plants were completely established in the field. We assessed eleven graft and three rootstock varieties from four local nurseries in a region of Catalonia (NE Spain) where GTDs are a serious threat. After treatment, the plants were left to grow under field conditions for two growing seasons. Metabarcoding of the ITS region was used to study the mycobiomes of plant graft unions and root collars. We also assessed the influence of plant physiological indicators in community composition. Hot water treatment caused lasting changes in GTD communities in both the root collar and graft union that were not always characterized as a reduction of GTD-related fungi. However, HWT reduced the relative abundance of some serious GTD-associated pathogens such as Cadophora luteo-olivacea in graft tissues, and Phaeomoniella chlamydospora and Neofusicoccum parvum in the root collar. Treatment had the greatest influence on the total and GTD-related fungal communities of Chardonnay and Xarel·lo, respectively. Total community variation was driven by treatment and nursery in rootstocks, whereas HWT most significantly affected the GTD community composition in R-110 rootstock. In conclusion, changes in fungal abundance were species-specific and mostly dependent on the plant tissue type; however, HWT did reduce plant biomass accumulation in the short-term.
Collapse
|
19
|
Pollard-Flamand J, Boulé J, Hart M, Úrbez-Torres JR. Biocontrol Activity of Trichoderma Species Isolated from Grapevines in British Columbia against Botryosphaeria Dieback Fungal Pathogens. J Fungi (Basel) 2022; 8:409. [PMID: 35448640 PMCID: PMC9030288 DOI: 10.3390/jof8040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Botryosphaeria dieback (BD) is a grapevine trunk disease (GTD) causing significant yield losses and limiting the lifespan of vineyards worldwide. Fungi responsible for BD infect grapevines primarily through pruning wounds, and thus pruning wound protection, using either synthetic chemicals or biological control agents (BCAs), is the main available management strategy. However, no products to control GTDs are currently registered in Canada. With a focus on more sustainable grapevine production, there is an increasing demand for alternatives to chemical products to manage GTDs. Accordingly, the objective of this study was to identify Trichoderma species from grapevines in British Columbia (BC) and evaluate their potential biocontrol activity against BD fungi Diplodia seriata and Neofusicoccum parvum. Phylogenetic analyses identified seven species, including T. asperelloides, T. atroviride, T. harzianum, T. koningii, T. tomentosum, and two novel species, T. canadense and T. viticola. In vitro dual culture antagonistic assays showed several isolates to inhibit fungal pathogen mycelial growth by up to 75%. In planta detached cane assays under controlled greenhouse conditions identified T. asperelloides, T. atroviride and T. canadense isolates from BC as providing 70% to 100% pruning wound protection against BD fungi for up to 21 days after treatment. In addition, these isolates were shown to provide similar or better control when compared against commercial chemical and biocontrol products. This study demonstrates the potential that locally sourced Trichoderma species can have for pruning wound protection against BD fungi, and further supports the evaluation of these isolates under natural field conditions.
Collapse
Affiliation(s)
- Jinxz Pollard-Flamand
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Julie Boulé
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| | - Miranda Hart
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| |
Collapse
|
20
|
Cobos R, Ibañez A, Diez-Galán A, Calvo-Peña C, Ghoreshizadeh S, Coque JJR. The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070840. [PMID: 35406820 PMCID: PMC9003034 DOI: 10.3390/plants11070840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 05/13/2023]
Abstract
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies.
Collapse
Affiliation(s)
- Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Alba Diez-Galán
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Seyedehtannaz Ghoreshizadeh
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987291811
| |
Collapse
|
21
|
Marco S, Loredana M, Riccardo V, Raffaella B, Walter C, Luca N. Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. HORTICULTURE RESEARCH 2022; 9:uhac160. [PMID: 36204199 PMCID: PMC9531342 DOI: 10.1093/hr/uhac160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
In the past years, breeding programs have been mainly addressed on pushing the commercial features, forgetting important traits, such as those related to environmental stress resilience, that are instead present in wild relatives. Among the traits neglected by breeding processes, the ability to recruit beneficial microorganisms that recently is receiving a growing attention due to its potentiality. In this context, this review will provide a spotlight on critical issues of the anthropocentric point of view that, until now, has characterized the selection of elite plant genotypes. Its effects on the plant-microbiome interactions, and the possibility to develop novel strategies mediated by the exploitation of beneficial root-microbe interactions, will be discussed. More sustainable microbial-assisted strategies might in fact foster the green revolution and the achievement of a more sustainable agriculture in a climatic change scenario.
Collapse
Affiliation(s)
| | | | - Velasco Riccardo
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | | | | | | |
Collapse
|
22
|
Minimal versus Intensive: How the Pruning Intensity Affects Occurrence of Grapevine Leaf Stripe Disease, Wood Integrity, and the Mycobiome in Grapevine Trunks. J Fungi (Basel) 2022; 8:jof8030247. [PMID: 35330249 PMCID: PMC8948712 DOI: 10.3390/jof8030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
Previous works on grapevine-trunk diseases indicate that minimal or non-pruning of the grapevine under certain circumstances can significantly reduce the risk of symptom expression. Nevertheless, knowledge of the mechanisms behind these observations are limited. Therefore, it was the aim of this study to investigate in more detail the effect of pruning intensity on the grapevine trunk by means of trunk integrity and the fungal community in the wood tissue. Two German vineyards partially trained in vertical-shoot position and semi-minimally pruned hedges were chosen for this survey due to the accessibility of multi-annual esca-monitoring data. The results revealed that only in one of the two vineyards was the incidence of external esca symptoms significantly reduced over a period of five years (2017–2021) by minimal pruning, which was up to 73.7% compared to intensive pruning. In both vineyards, the trunks of intensively pruned vines not only had more pruning wounds on the trunk (by 86.0% and 72.9%, respectively) than minimally pruned vines, but also exhibited a larger (by 19.3% and 14.7%, respectively) circumference of the trunk head. In addition, the percentage of white rot and necrosis in the trunks of esca-positive and esca-negative vines was analyzed and compared between the two pruning intensities; hereby, significant differences were only found for esca-negative ‘Dornfelder’ vines, in which the proportion of necrosis was higher for intensively pruned vines (23.0%) than for minimally pruned vines (11.5%). The fungal communities of the differently pruned vine trunks were mainly dominated by four genera, which are also associated with GTDs: Diplodia, Eutypa, Fomitiporia and Phaeomoniella. All in all, the fungal diversity and community composition did not differ between minimally and intensively pruned, esca-positive vines.
Collapse
|
23
|
Rodrigo S, García-Latorre C, Santamaria O. Metabolites Produced by Fungi against Fungal Phytopathogens: Review, Implementation and Perspectives. PLANTS (BASEL, SWITZERLAND) 2021; 11:81. [PMID: 35009084 PMCID: PMC8747711 DOI: 10.3390/plants11010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023]
Abstract
Many fungi, especially endophytes, have been found to produce multiple benefits in their plant hosts, with many of these benefits associated with the protection of plants against fungal diseases. This fact could be used in the development of new bio-products that could gradually reduce the need for chemical fungicides, which have been associated with multiple health and environmental problems. However, the utilization of the living organism may present several issues, such as an inconsistency in the results obtained and more complicated management and application, as fungal species are highly influenced by environmental conditions, the type of relationship with the plant host and interaction with other microorganisms. These issues could be addressed by using the bioactive compounds produced by the fungus, in cases where they were responsible for positive effects, instead of the living organism. Multiple bioactive compounds produced by fungal species, especially endophytes, with antifungal properties have been previously reported in the literature. However, despite the large amount of these metabolites and their potential, extensive in-field application on a large scale has not yet been implemented. In the present review, the main aspects explaining this limited implementation are analyzed, and the present and future perspectives for its development are discussed.
Collapse
Affiliation(s)
- Sara Rodrigo
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain; (S.R.); (C.G.-L.)
| | - Carlos García-Latorre
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain; (S.R.); (C.G.-L.)
| | - Oscar Santamaria
- Department of Construction and Agronomy, University of Salamanca, Avda, Cardenal Cisneros 34, 49029 Zamora, Spain
| |
Collapse
|
24
|
Kovács C, Csótó A, Pál K, Nagy A, Fekete E, Karaffa L, Kubicek CP, Sándor E. The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines. Part I. Isolation, Identification and In Vitro Studies. Pathogens 2021; 10:pathogens10121612. [PMID: 34959567 PMCID: PMC8708432 DOI: 10.3390/pathogens10121612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
This paper reports on the identification and in vitro characterization of several Trichoderma strains isolated from the Tokaj Wine Region in North-East Hungary. Ten isolates were analyzed and found to consist of six individual species—T. gamsii, T. orientale, T. simmonsii, T. afroharzianum, T. atrobrunneum and T. harzianum sensu stricto. The growth potential of the strains was assessed at a range of temperatures. We also report here on the in vitro biocontrol properties and fungicide tolerance of the most promising strains.
Collapse
Affiliation(s)
- Csilla Kovács
- Research Institute Újfehértó, Agricultural Research and Educational Farm, University of Debrecen, Vadas tag 2, H-4244 Újfehértó, Hungary;
| | - András Csótó
- Institute of Plant Protection, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary; (A.Cs.); (A.N.)
- Kálmán Kerpely Doctoral School, University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary
| | - Károly Pál
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary;
| | - Antal Nagy
- Institute of Plant Protection, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary; (A.Cs.); (A.N.)
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (E.F.); (L.K.)
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (E.F.); (L.K.)
- Institute of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Christian P. Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna A-1060, Austria;
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Böszörményi út 138, H-4032 Debrecen, Hungary;
- Correspondence:
| |
Collapse
|
25
|
Mao T, Jiang X. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application. Sci Rep 2021; 11:21585. [PMID: 34732764 PMCID: PMC8566488 DOI: 10.1038/s41598-021-00951-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
To clarify the control effects of Trichoderma hamatum strain MHT1134 on Fusarium wilt in continuous pepper cropping fields and its regulatory effects on soil microecology, the physical and chemical properties, enzyme activities, community structures of soil samples from five field types were analysed. Samples were taken from fields that had been continuously planted for 1, 5, 9 years, and applied the strain MHT1134 for 1 and 2 years. The MHT1134 control effects on pepper wilt after application 1 year and 2 years were 63.03% and 70.21%, respectively. 4 kinds of physical and chemical indexes and 6 kinds of enzyme activities in soil were increased. With the continuous cropping years increased, the microbial abundance and diversity decreasing significantly. The relative abundances of Fusarium, Gibberella increased along with the planting years, but decreased after the MHT11134 application. However, the relative abundances of Trichoderma and Chaetomium significantly increased. Additionally, as the cropping years increased, the soil abundance of Actinobacteria gradually decreased, but it significantly increased from 17.56 to 22.44% after the MHT1134 application. Thus, strain MHT1134 effectively improved the microbial community structure of the soil, and it also positively affected soil quality. A continuous application may improve the control effect.
Collapse
Affiliation(s)
- Tingting Mao
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China.,Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Xuanli Jiang
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China.
| |
Collapse
|
26
|
Di Canito A, Mateo-Vargas MA, Mazzieri M, Cantoral J, Foschino R, Cordero-Bueso G, Vigentini I. The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods 2021; 10:1650. [PMID: 34359520 PMCID: PMC8306029 DOI: 10.3390/foods10071650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
In view of the growing concern about the impact of synthetic fungicides on human health and the environment, several government bodies have decided to ban them. As a result, a great number of studies have been carried out in recent decades with the aim of finding a biological alternative to inhibit the growth of fungal pathogens. In order to avoid the large losses of fruit and vegetables that these pathogens cause every year, the biological alternative's efficacy should be the same as that of a chemical pesticide. In this review, the main studies discussed concern Saccharomyces and non-Saccharomyces yeasts as potential antagonists against phytopathogenic fungi of the genera Penicillium and Aspergillus and the species Botrytis cinerea on table grapes, wine grapes, and raisins.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - María Alejandra Mateo-Vargas
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Monica Mazzieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Jesús Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| | - Gustavo Cordero-Bueso
- Department of Biomedicine, Biotechnology and Public Health, Universidad de Cádiz, Av. República Saharaui s/n, 11510 Cádiz, Spain; (M.A.M.-V.); (J.C.)
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (A.D.C.); (M.M.); (R.F.)
| |
Collapse
|