1
|
Oluwole AO, Kalmankar NV, Guida M, Bennett JL, Poce G, Bolla JR, Robinson CV. Lipopeptide antibiotics disrupt interactions of undecaprenyl phosphate with UptA. Proc Natl Acad Sci U S A 2024; 121:e2408315121. [PMID: 39361645 PMCID: PMC11474028 DOI: 10.1073/pnas.2408315121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The peptidoglycan pathway represents one of the most successful antibacterial targets with the last critical step being the flipping of carrier lipid, undecaprenyl phosphate (C55-P), across the membrane to reenter the pathway. This translocation of C55-P is facilitated by DedA and DUF368 domain-containing family membrane proteins via unknown mechanisms. Here, we employ native mass spectrometry to investigate the interactions of UptA, a member of the DedA family of membrane protein from Bacillus subtilis, with C55-P, membrane phospholipids, and cell wall-targeting antibiotics. Our results show that UptA, expressed and purified in Escherichia coli, forms monomer-dimer equilibria, and binds to C55-P in a pH-dependent fashion. Specifically, we show that UptA interacts more favorably with C55-P over shorter-chain analogs and membrane phospholipids. Moreover, we demonstrate that lipopeptide antibiotics, amphomycin and aspartocin D, can directly inhibit UptA function by out-competing the substrate for the protein binding, in addition to their propensity to form complex with free C55-P. Overall, this study shows that UptA-mediated translocation of C55-P is potentially mediated by pH and anionic phospholipids and provides insights for future development of antibiotics targeting carrier lipid recycling.
Collapse
Affiliation(s)
- Abraham O. Oluwole
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Neha V. Kalmankar
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michela Guida
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Rome00185, Italy
| | - Jack L. Bennett
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Rome00185, Italy
| | - Jani R. Bolla
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
2
|
Shiraliyev R, Orman MA. Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance. eLife 2024; 13:RP94903. [PMID: 39093940 PMCID: PMC11296704 DOI: 10.7554/elife.94903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.
Collapse
Affiliation(s)
- Rauf Shiraliyev
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of HoustonHoustonUnited States
| | - Mehmet A Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of HoustonHoustonUnited States
| |
Collapse
|
3
|
Shiraliyev R, Orman MA. METABOLIC DISRUPTION IMPAIRS RIBOSOMAL PROTEIN LEVELS, RESULTING IN ENHANCED AMINOGLYCOSIDE TOLERANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572673. [PMID: 38187583 PMCID: PMC10769322 DOI: 10.1101/2023.12.20.572673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Aminoglycoside antibiotics display broad-spectrum activity against Gram-negative and Grampositive bacteria by targeting their ribosomes. Herein, we have demonstrated that energy metabolism plays a crucial role in aminoglycoside tolerance, as knockout strains associated with the tricarboxylic acid cycle (TCA) and the electron transport chain (ETC) exhibited increased tolerance to aminoglycosides in the mid-exponential growth phase of Escherichia coli cells. Given that aminoglycoside uptake relies on the energy-driven electrochemical potential across the cytoplasmic membrane, our initial expectation was that these genetic perturbations would decrease the proton motive force (PMF), subsequently affecting the uptake of aminoglycosides. However, our results did not corroborate this assumption. We found no consistent metabolic changes, ATP levels, cytoplasmic pH variations, or membrane potential differences in the mutant strains compared to the wild type. Additionally, intracellular concentrations of fluorophore-labeled gentamicin remained similar across all strains. To uncover the mechanism responsible for the observed tolerance in mutant strains, we employed untargeted mass spectrometry to quantify the proteins within these mutants and subsequently compared them to their wild-type counterparts. Our comprehensive analysis, which encompassed protein-protein association networks and functional enrichment, unveiled a noteworthy upregulation of proteins linked to the TCA cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research has the potential to uncover mechanisms behind aminoglycoside tolerance, paving the way for novel strategies to combat such cells.
Collapse
Affiliation(s)
- Rauf Shiraliyev
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204
| | - Mehmet A Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204
| |
Collapse
|
4
|
Iqbal A, Nwokocha G, Tiwari V, Barphagha IK, Grove A, Ham JH, Doerrler WT. A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing. MOLECULAR PLANT PATHOLOGY 2023; 24:1400-1413. [PMID: 37428013 PMCID: PMC10576180 DOI: 10.1111/mpp.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Bacterial panicle blight is caused by Burkholderia glumae and results in damage to rice crops worldwide. Virulence of B. glumae requires quorum sensing (QS)-dependent synthesis and export of toxoflavin, responsible for much of the damage to rice. The DedA family is a conserved membrane protein family found in all bacterial species. B. glumae possesses a member of the DedA family, named DbcA, which we previously showed is required for toxoflavin secretion and virulence in a rice model of infection. B. glumae secretes oxalic acid as a "common good" in a QS-dependent manner to combat toxic alkalinization of the growth medium during the stationary phase. Here, we show that B. glumae ΔdbcA fails to secrete oxalic acid, leading to alkaline toxicity and sensitivity to divalent cations, suggesting a role for DbcA in oxalic acid secretion. B. glumae ΔdbcA accumulated less acyl-homoserine lactone (AHL) QS signalling molecules as the bacteria entered the stationary phase, probably due to nonenzymatic inactivation of AHL at alkaline pH. Transcription of toxoflavin and oxalic acid operons was down-regulated in ΔdbcA. Alteration of the proton motive force with sodium bicarbonate also reduced oxalic acid secretion and expression of QS-dependent genes. Overall, the data show that DbcA is required for oxalic acid secretion in a proton motive force-dependent manner, which is critical for QS of B. glumae. Moreover, this study supports the idea that sodium bicarbonate may serve as a chemical for treatment of bacterial panicle blight.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - George Nwokocha
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Vijay Tiwari
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Inderjit K. Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - Anne Grove
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Jong Hyun Ham
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| | - William T. Doerrler
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Roney IJ, Rudner DZ. Two broadly conserved families of polyprenyl-phosphate transporters. Nature 2023; 613:729-734. [PMID: 36450357 PMCID: PMC10184681 DOI: 10.1038/s41586-022-05587-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Peptidoglycan and almost all surface glycopolymers in bacteria are built in the cytoplasm on the lipid carrier undecaprenyl phosphate (UndP)1-4. These UndP-linked precursors are transported across the membrane and polymerized or directly transferred to surface polymers, lipids or proteins. UndP is then flipped to regenerate the pool of cytoplasmic-facing UndP. The identity of the flippase that catalyses transport has remained unknown. Here, using the antibiotic amphomycin that targets UndP5-7, we identified two broadly conserved protein families that affect UndP recycling. One (UptA) is a member of the DedA superfamily8; the other (PopT) contains the domain DUF368. Genetic, cytological and syntenic analyses indicate that these proteins are UndP transporters. Notably, homologues from Gram-positive and Gram-negative bacteria promote UndP transport in Bacillus subtilis, indicating that recycling activity is broadly conserved among family members. Inhibitors of these flippases could potentiate the activity of antibiotics targeting the cell envelope.
Collapse
Affiliation(s)
- Ian J Roney
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Sit B, Srisuknimit V, Bueno E, Zingl FG, Hullahalli K, Cava F, Waldor MK. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature 2023; 613:721-728. [PMID: 36450355 PMCID: PMC9876793 DOI: 10.1038/s41586-022-05569-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Franz G Zingl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
NoiD, a DedA membrane protein required for homeostasis maintaining of Rhizobium leguminosarum biovar viciae during symbiosis with Pisum sativum. Symbiosis 2022. [DOI: 10.1007/s13199-021-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Tiwari V, Panta PR, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A Klebsiella pneumoniae DedA family membrane protein is required for colistin resistance and for virulence in wax moth larvae. Sci Rep 2021; 11:24365. [PMID: 34934166 PMCID: PMC8692421 DOI: 10.1038/s41598-021-03834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Ineffectiveness of carbapenems against multidrug resistant pathogens led to the increased use of colistin (polymyxin E) as a last resort antibiotic. A gene belonging to the DedA family encoding conserved membrane proteins was previously identified by screening a transposon library of K. pneumoniae ST258 for sensitivity to colistin. We have renamed this gene dkcA (dedA of Klebsiella required for colistin resistance). DedA family proteins are likely membrane transporters required for viability of Escherichia coli and Burkholderia spp. at alkaline pH and for resistance to colistin in a number of bacterial species. Colistin resistance is often conferred via modification of the lipid A component of bacterial lipopolysaccharide with aminoarabinose (Ara4N) and/or phosphoethanolamine. Mass spectrometry analysis of lipid A of the ∆dkcA mutant shows a near absence of Ara4N in the lipid A, suggesting a requirement for DkcA for lipid A modification with Ara4N. Mutation of K. pneumoniae dkcA resulted in a reduction of the colistin minimal inhibitory concentration to approximately what is found with a ΔarnT strain. We also identify a requirement of DkcA for colistin resistance that is independent of lipid A modification, instead requiring maintenance of optimal membrane potential. K. pneumoniae ΔdkcA displays reduced virulence in Galleria mellonella suggesting colistin sensitivity can cause loss of virulence.
Collapse
Affiliation(s)
- Vijay Tiwari
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Pradip R. Panta
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Caitlin E. Billiot
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| | - Martin V. Douglass
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - Carmen M. Herrera
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - M. Stephen Trent
- grid.213876.90000 0004 1936 738XDepartment of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA USA
| | - William T. Doerrler
- grid.64337.350000 0001 0662 7451Department of Biological Sciences, Louisiana State University, Baton Rouge, LA USA
| |
Collapse
|
10
|
Scarsbrook HL, Urban R, Streather BR, Moores A, Mulligan C. Topological analysis of a bacterial DedA protein associated with alkaline tolerance and antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34914576 DOI: 10.1099/mic.0.001125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintaining membrane integrity is of paramount importance to the survival of bacteria as the membrane is the site of multiple crucial cellular processes including energy generation, nutrient uptake and antimicrobial efflux. The DedA family of integral membrane proteins are widespread in bacteria and are associated with maintaining the integrity of the membrane. In addition, DedA proteins have been linked to resistance to multiple classes of antimicrobials in various microorganisms. Therefore, the DedA family are attractive targets for the development of new antibiotics. Despite DedA family members playing a key physiological role in many bacteria, their structure, function and physiological role remain unclear. To help illuminate the structure of the bacterial DedA proteins, we performed substituted cysteine accessibility method (SCAM) analysis on the most comprehensively characterized bacterial DedA protein, YqjA from Escherichia coli. By probing the accessibility of 15 cysteine residues across the length of YqjA using thiol reactive reagents, we mapped the topology of the protein. Using these data, we experimentally validated a structural model of YqjA generated using evolutionary covariance, which consists of an α-helical bundle with two re-entrant hairpin loops reminiscent of several secondary active transporters. In addition, our cysteine accessibility data suggest that YqjA forms an oligomer wherein the protomers are arranged in a parallel fashion. This experimentally verified model of YqjA lays the foundation for future work in understanding the function and mechanism of this interesting and important family.
Collapse
Affiliation(s)
- Hollie L Scarsbrook
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Roman Urban
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bree R Streather
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alexandra Moores
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | | |
Collapse
|
11
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
12
|
Zhu K, Kong J, Zhao B, Rong L, Liu S, Lu Z, Zhang C, Xiao D, Pushpanathan K, Foo JL, Wong A, Yu A. Metabolic engineering of microbes for monoterpenoid production. Biotechnol Adv 2021; 53:107837. [PMID: 34555428 DOI: 10.1016/j.biotechadv.2021.107837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Monoterpenoids are an important class of natural products that are derived from the condensation of two five‑carbon isoprene subunits. They are widely used for flavouring, fragrances, colourants, cosmetics, fuels, chemicals, and pharmaceuticals in various industries. They can also serve as precursors for the production of many industrially important products. Currently, monoterpenoids are produced predominantly through extraction from plant sources. However, the small quantity of monoterpenoids in nature renders this method of isolation non-economically viable. Similarly impractical is the chemical synthesis of these compounds as they suffer from high energy consumption and pollutant discharge. Microbial biosynthesis, however, exists as a potential solution to these hindrances, but the transformation of cells into efficient factories remains a major impediment. Here, we critically review the recent advances in engineering microbes for monoterpenoid production, with an emphasis on categorized strategies, and discuss the challenges and perspectives to offer guidance for future engineering.
Collapse
Affiliation(s)
- Kun Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Jing Kong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Krithi Pushpanathan
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Adison Wong
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| |
Collapse
|
13
|
Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight. Appl Environ Microbiol 2021; 87:e0091521. [PMID: 34260305 DOI: 10.1128/aem.00915-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rice is an important source of food for more than half of the world's population. Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. B. glumae synthesizes toxoflavin, an essential virulence factor that is required for symptoms of the disease. The products of the tox operons, ToxABCDE and ToxFGHI, are responsible for the synthesis and the proton motive force (PMF)-dependent secretion of toxoflavin, respectively. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Our previous work has demonstrated that absence of certain DedA family members results in pleiotropic effects, impacting multiple pathways that are energized by PMF. We have demonstrated that a member of the DedA family from Burkholderia thailandensis, named DbcA, is required for the extreme polymyxin resistance observed in this organism. B. glumae encodes a homolog of DbcA with 73% amino acid identity to Burkholderia thailandensis DbcA. Here, we created and characterized a B. glumae ΔdbcA strain. In addition to polymyxin sensitivity, the B. glumae ΔdbcA strain is compromised for virulence in several BPB infection models and secretes only low amounts of toxoflavin (∼15% of wild-type levels). Changes in membrane potential in the B. glumae ΔdbcA strain were reproduced in the wild-type strain by the addition of subinhibitory concentrations of sodium bicarbonate, previously demonstrated to cause disruption of PMF. Sodium bicarbonate inhibited B. glumae virulence in rice, suggesting a possible non-toxic chemical intervention for bacterial panicle blight. IMPORTANCE Bacterial panicle blight (BPB) is a disease of rice characterized by grain discoloration or sheath rot caused mainly by Burkholderia glumae. The DedA family is a highly conserved membrane protein family found in most bacterial genomes that likely function as membrane transporters. Here, we constructed a B. glumae mutant with a deletion in a DedA family member named dbcA and report a loss of virulence in models of BPB. Physiological analysis of the mutant shows that the proton motive force is disrupted, leading to reduction of secretion of the essential virulence factor toxoflavin. The mutant phenotypes are reproduced in the virulent wild-type strain without an effect on growth using sodium bicarbonate, a nontoxic buffer that has been reported to disrupt the PMF. The results presented here suggest that bicarbonate may be an effective antivirulence agent capable of controlling BPB without imposing an undue burden on the environment.
Collapse
|
14
|
Panta PR, Doerrler WT. A link between pH homeostasis and colistin resistance in bacteria. Sci Rep 2021; 11:13230. [PMID: 34168215 PMCID: PMC8225787 DOI: 10.1038/s41598-021-92718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Okawa F, Hama Y, Zhang S, Morishita H, Yamamoto H, Levine TP, Mizushima N. Evolution and insights into the structure and function of the DedA superfamily containing TMEM41B and VMP1. J Cell Sci 2021; 134:237813. [PMID: 33771928 DOI: 10.1242/jcs.255877] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
TMEM41B and VMP1 are endoplasmic reticulum (ER)-localizing multi-spanning membrane proteins required for ER-related cellular processes such as autophagosome formation, lipid droplet homeostasis and lipoprotein secretion in eukaryotes. Both proteins have a VTT domain, which is similar to the DedA domain found in bacterial DedA family proteins. However, the molecular function and structure of the DedA and VTT domains (collectively referred to as DedA domains) and the evolutionary relationships among the DedA domain-containing proteins are largely unknown. Here, we conduct a remote homology search and identify a new clade consisting mainly of bacterial proteins of unknown function that are members of the Pfam family PF06695. Phylogenetic analysis reveals that the TMEM41, VMP1, DedA and PF06695 families form a superfamily with a common origin, which we term the DedA superfamily. Coevolution-based structural prediction suggests that the DedA domain contains two reentrant loops facing each other in the membrane. This topology is biochemically verified by the substituted cysteine accessibility method. The predicted structure is topologically similar to that of the substrate-binding region of Na+-coupled glutamate transporter solute carrier 1 (SLC1) proteins. A potential ion-coupled transport function of the DedA superfamily proteins is discussed. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Fumiya Okawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|