1
|
Almendros-Ginesta O, Clavero-Sanchez MA, Sánchez M, Missana T. Analysis of the effect of citrate on radionuclide retention on portlandite. CHEMOSPHERE 2024; 364:143143. [PMID: 39178969 DOI: 10.1016/j.chemosphere.2024.143143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
We analysed how citrate (CIT), a chelating agent potentially present in radioactive waste disposals, affects the mobility of four radionuclides (RN): 63Ni, 233U, 152Eu, 238Pu in portlandite, an important hydrated phase of cement, a commonly used material for waste isolation. Portlandite was synthetized in the laboratory and showed high purity and grain size of few μm. This solid, buffers the pH to 12.5 and shows high adsorption capability for the studied RNs: 152Eu and 238Pu exhibited the highest adsorption (Kd ∼1·105 mL g-1) and 233U the lowest (Kd ∼8·102 mL g-1). CIT adsorption was also experimentally evaluated by batch sorption experiments and electrophoretic (ζ-potential) measurements: a non-lineal sorption behaviour was observed, with Kd values decreasing (from ∼1·103 mL g-1) as CIT concentration increased up to 1·10-2 M, according to portlandite sorption sites saturation. In the presence of CIT, a marginal decrease for 233U adsorption in portlandite was observed, one order of magnitude reduction for 63Ni, while 238Pu and 152Eu adsorption decreased significantly. The calculated sorption reduction factors (SRF) for the four RN in the presence of CIT at a concentration of 5·10-3 M were: 2.4, 9.7, 37 and 50.9 for 233U, 63Ni, 238Pu, and 152Eu, respectively. According to the available thermodynamic databases, low complexation between CIT and RN is predicted at pH = 12.5, thus the RN adsorption decrease in the presence of CIT must be attributed to the organic adsorption on portlandite. However, current thermodynamic are still incomplete for this ligand and this pH range and this limits a precise interpretation of the experimental data.
Collapse
Affiliation(s)
| | | | - Miguel Sánchez
- Mass Spectroscopy and Geochemical Applications Unit, Avenida Complutense 40, 28040, MADRID, Spain
| | - Tiziana Missana
- CIEMAT Physical Chemistry of Actinides and Fission Products Unit, Spain
| |
Collapse
|
2
|
White-Pettigrew M, Shaw S, Hughes L, Boothman C, Graham J, Abrahamsen-Mills L, Morris K, Lloyd JR. Enhanced Strontium Removal through Microbially Induced Carbonate Precipitation by Indigenous Ureolytic Bacteria. ACS EARTH & SPACE CHEMISTRY 2024; 8:483-498. [PMID: 38533191 PMCID: PMC10961847 DOI: 10.1021/acsearthspacechem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 03/28/2024]
Abstract
Microbial ureolysis offers the potential to remove metals including Sr2+ as carbonate minerals via the generation of alkalinity coupled to NH4+ and HCO3- production. Here, we investigated the potential for bacteria, indigenous to sediments representative of the U.K. Sellafield nuclear site where 90Sr is present as a groundwater contaminant, to utilize urea in order to target Sr2+-associated (Ca)CO3 formation in sediment microcosm studies. Strontium removal was enhanced in most sediments in the presence of urea only, coinciding with a significant pH increase. Adding the biostimulation agents acetate/lactate, Fe(III), and yeast extract to further enhance microbial metabolism, including ureolysis, enhanced ureolysis and increased Sr and Ca removal. Environmental scanning electron microscopy analyses suggested that coprecipitation of Ca and Sr occurred, with evidence of Sr associated with calcium carbonate polymorphs. Sr K-edge X-ray absorption spectroscopy analysis was conducted on authentic Sellafield sediments stimulated with Fe(III) and quarry outcrop sediments amended with yeast extract. Spectra from the treated Sellafield and quarry sediments showed Sr2+ local coordination environments indicative of incorporation into calcite and vaterite crystal structures, respectively. 16S rRNA gene analysis identified ureolytic bacteria of the genus Sporosarcina in these incubations, suggesting they have a key role in enhancing strontium removal. The onset of ureolysis also appeared to enhance the microbial reduction of Fe(III), potentially via a tight coupling between Fe(III) and NH4+ as an electron donor for metal reduction. This suggests ureolysis may support the immobilization of 90Sr via coprecipitation with insoluble calcium carbonate and cofacilitate reductive precipitation of certain redox active radionuclides, e.g., uranium.
Collapse
Affiliation(s)
- Matthew White-Pettigrew
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
- National
Nuclear Laboratory, Warrington, Cheshire WA3 6AE, United Kingdom
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Lewis Hughes
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Boothman
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - James Graham
- National
Nuclear Laboratory, Warrington, Cheshire WA3 6AE, United Kingdom
| | | | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jonathan R. Lloyd
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Thorpe CL, Crawford R, Hand RJ, Radford JT, Corkhill CL, Pearce CI, Neeway JJ, Plymale AE, Kruger AA, Morris K, Boothman C, Lloyd JR. Microbial interactions with phosphorus containing glasses representative of vitrified radioactive waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132667. [PMID: 37839373 DOI: 10.1016/j.jhazmat.2023.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The presence of phosphorus in borosilicate glass (at 0.1 - 1.3 mol% P2O5) and in iron-phosphate glass (at 53 mol% P2O5) stimulated the growth and metabolic activity of anaerobic bacteria in model systems. Dissolution of these phosphorus containing glasses was either inhibited or accelerated by microbial metabolic activity, depending on the solution chemistry and the glass composition. The breakdown of organic carbon to volatile fatty acids increased glass dissolution. The interaction of microbially reduced Fe(II) with phosphorus-containing glass under anoxic conditions decreased dissolution rates, whereas the interaction of Fe(III) with phosphorus-containing glass under oxic conditions increased glass dissolution. Phosphorus addition to borosilicate glasses did not significantly affect the microbial species present, however, the diversity of the microbial community was enhanced on the surface of the iron phosphate glass. Results demonstrate the potential for microbes to influence the geochemistry of radioactive waste disposal environments with implication for wasteform durability.
Collapse
Affiliation(s)
- C L Thorpe
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK.
| | - R Crawford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - R J Hand
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - J T Radford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - C L Corkhill
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK; School of Earth Sciences, The University of Bristol, Bristol, UK
| | - C I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - J J Neeway
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A E Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A A Kruger
- Office of River Protection, US Department of Energy, Richland, WA, USA
| | - K Morris
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - C Boothman
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - J R Lloyd
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| |
Collapse
|
4
|
Gregory SP, Mackie JRM, Barnett MJ. Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. FEMS Microbiol Rev 2024; 48:fuae001. [PMID: 38216518 PMCID: PMC10853057 DOI: 10.1093/femsre/fuae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024] Open
Abstract
The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.
Collapse
Affiliation(s)
- Simon P Gregory
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Jessica R M Mackie
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Megan J Barnett
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| |
Collapse
|
5
|
Mijnendonckx K, Bleyen N, Van Gompel A, Coninx I, Leys N. pH and microbial community determine the denitrifying activity in the presence of nitrate-containing radioactive waste. Front Microbiol 2022; 13:968220. [PMID: 36338040 PMCID: PMC9634998 DOI: 10.3389/fmicb.2022.968220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
An important fraction of the currently stored volume of long-lived intermediate-level radioactive waste in Belgium contains large amounts of NaNO3 homogeneously dispersed in a hard bituminous matrix. Geological disposal of this waste form in a water-saturated sedimentary formation such as Boom Clay will result in the leaching of high concentrations of NaNO3, which could cause a geochemical perturbation of the surrounding clay, possibly affecting some of the favorable characteristics of the host formation. In addition, hyper-alkaline conditions are expected for thousands of years, imposed by the cementitious materials used as backfill material. Microbial nitrate reduction is a well-known process and can result in the accumulation of nitrite or nitrogenous gases. This could lead to the oxidation of redox-active Boom Clay components, which could (locally) decrease the reducing capacity of the clay formation. Here, we compared nitrate reduction processes between two microbial communities at different pH related to a geological repository environment and in the presence of a nitrate-containing waste simulate during 1 year in batch experiments. We showed that the microbial community from in Boom Clay borehole water was able to carry out nitrate reduction in the presence of acetate at pH 10.5, although the maximum rate of 1.3 ± 0.2 mM NO3 -/day was much lower compared to that observed at pH 9 (2.9 mM NO3 -/day). However, microbial activity at pH 10.5 was likely limited by a phosphate shortage. This study further confirmed that the Harpur Hill sediment harbors a microbial community adapted to high pH conditions. It reduced twice as much nitrate at pH 10.5 compared to pH 9 and the maximum nitrate reduction rate was higher at pH 10.5 compared to that at pH 9, i.e., 3.4 ± 0.8 mM NO3 -/day versus 2.2 ± 0.4 mM NO3 -/day. Both communities were able to form biofilms on non-radioactive Eurobitum. However, for both microbial communities, pH 12.5 seems to be a limiting condition for microbial activity as no nitrate reduction nor biofilm was observed. Nevertheless, pH alone is not sufficient to eliminate microbial presence, but it can induce a significant shift in the microbial community composition and reduce its nitrate reducing activity. Furthermore, at the interface between the cementitious disposal gallery and the clay host rock, the pH will not be sufficiently high to inhibit microbial nitrate reduction.
Collapse
Affiliation(s)
- Kristel Mijnendonckx
- Unit of Microbiology, SCK CEN, Mol, Belgium,*Correspondence: Kristel Mijnendonckx,
| | | | | | | | | |
Collapse
|
6
|
Nixon SL, Bonsall E, Cockell CS. Limitations of microbial iron reduction under extreme conditions. FEMS Microbiol Rev 2022; 46:6645348. [PMID: 35849069 PMCID: PMC9629499 DOI: 10.1093/femsre/fuac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Microbial iron reduction is a widespread and ancient metabolism on Earth, and may plausibly support microbial life on Mars and beyond. Yet, the extreme limits of this metabolism are yet to be defined. To investigate this, we surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature. We then calculated Gibbs free energy of common microbially mediated iron reduction reactions across the pH-temperature habitability space to identify thermodynamic limits. Comparing predicted and observed limits, we show that microbial iron reduction is generally reported at extremes of pH or temperature alone, but not when these extremes are combined (with the exception of a small number of acidophilic hyperthermophiles). These patterns leave thermodynamically favourable combinations of pH and temperature apparently unoccupied. The empty spaces could be explained by experimental bias, but they could also be explained by energetic and biochemical limits to iron reduction at combined extremes. Our data allow for a review of our current understanding of the limits to microbial iron reduction at extremes and provide a basis to test more general hypotheses about the extent to which biochemistry establishes the limits to life.
Collapse
Affiliation(s)
- Sophie L Nixon
- Corresponding author: Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| | - Emily Bonsall
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
7
|
Performance of stacked microbial fuel cells with Barley–Shochu waste. J Biosci Bioeng 2022; 133:467-473. [DOI: 10.1016/j.jbiosc.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
|