1
|
Prakash P, Weerasinghe J, Levchenko I, Prasad K, Alexander K. Polyimide nanocomposites for next generation spacesuits. MATERIALS HORIZONS 2025. [PMID: 40094194 DOI: 10.1039/d4mh01816h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyimides have a long history of use in space missions, with Kapton® being the first polymer material to touch the surface of the Moon. Polyimides offer remarkable mechanical strength, superior thermal stability, and resistance to radiation, chemicals, and wear, and as such are often serve as a thermal barrier and a protective layer against extreme radiation and temperatures in multi-layer insulation systems. While the use of Kapton® in spacesuits dates back to the two aluminised Kapton® layers used in the spacesuits in the Apollo 11 mission, the potential uses of polyimides in the design of spacesuits remain underexplored, particularly considering the advancement made in the development of high-performance polyimide-based composites. This review explores the opportunities that emerge when the desirable properties of polyimides are combined with that of nanomaterials, specifically carbon nanomaterials, to produce strategic material combinations that promise to achieve enhanced thermal and mechanical properties, improved resistance to abrasion and puncture, and potentially reduced weight compared to traditional spacesuit materials. In turn, these advancements will contribute to the development of next-generation spacesuits that offer superior comfort, protection, and astronaut mobility during extravehicular activities.
Collapse
Affiliation(s)
- Priyanka Prakash
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Janith Weerasinghe
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Karthika Prasad
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| | - Katia Alexander
- School of Engineering, ANU College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Spry JA, Siegel B, Bakermans C, Beaty DW, Bell MS, Benardini JN, Bonaccorsi R, Castro-Wallace SL, Coil DA, Coustenis A, Doran PT, Fenton L, Fidler DP, Glass B, Hoffman SJ, Karouia F, Levine JS, Lupisella ML, Martin-Torres J, Mogul R, Olsson-Francis K, Ortega-Ugalde S, Patel MR, Pearce DA, Race MS, Regberg AB, Rettberg P, Rummel JD, Sato KY, Schuerger AC, Sefton-Nash E, Sharkey M, Singh NK, Sinibaldi S, Stabekis P, Stoker CR, Venkateswaran KJ, Zimmerman RR, Zorzano-Mier MP. Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. ASTROBIOLOGY 2024; 24:230-274. [PMID: 38507695 DOI: 10.1089/ast.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Collapse
Affiliation(s)
| | | | - Corien Bakermans
- Department of Biology, Penn. State University (Altoona), Altoona, Pennsylvania, USA
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - David A Coil
- School of Medicine, University of California, Davis, Davis, California, USA
| | | | - Peter T Doran
- Department of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lori Fenton
- SETI Institute, Mountain View, California, USA
| | - David P Fidler
- Council on Foreign Relations, Washington, District of Columbia, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, California, USA
| | - Joel S Levine
- College of William & Mary, Williamsburg, Virginia, USA
| | | | - Javier Martin-Torres
- School of Geoscience, University of Aberdeen, Aberdeen, United Kingdom
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Spain
| | - Rakesh Mogul
- California Polytechnic (Pomona), Pomona, California, USA
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Manish R Patel
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - John D Rummel
- Friday Harbor Associates LLC, Friday Harbor, Washington, USA
| | | | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| | | | - Matthew Sharkey
- US Department of Health & Human Services, Washington, District of Columbia, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Carol R Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | |
Collapse
|
4
|
Vrankar D, Verseux C, Heinicke C. An airlock concept to reduce contamination risks during the human exploration of Mars. NPJ Microgravity 2023; 9:81. [PMID: 37805607 PMCID: PMC10560228 DOI: 10.1038/s41526-023-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/22/2023] [Indexed: 10/09/2023] Open
Abstract
Protecting the Martian environment from contamination with terrestrial microbes is generally seen as essential to the scientific exploration of Mars, especially when it comes to the search for indigenous life. However, while companies and space agencies aim at getting to Mars within ambitious timelines, the state-of-the-art planetary protection measures are only applicable to uncrewed spacecraft. With this paper, we attempt to reconcile these two conflicting goals: the human exploration of Mars and its protection from biological contamination. In our view, the one nominal mission activity that is most prone to introducing terrestrial microbes into the Martian environment is when humans leave their habitat to explore the Martian surface, if one were to use state-of-the-art airlocks. We therefore propose to adapt airlocks specifically to the goals of planetary protection. We suggest a concrete concept for such an adapted airlock, believing that only practical and implementable solutions will be followed by human explorers in the long run.
Collapse
Affiliation(s)
- Daniel Vrankar
- Faculty of Business and Economics, Technische Universität Dresden, Helmholtzstraße 10, 01069, Dresden, Germany
- Center of Applied Space Technology and Microgravity - ZARM, University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity - ZARM, University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Christiane Heinicke
- Center of Applied Space Technology and Microgravity - ZARM, University of Bremen, Am Fallturm 2, 28359, Bremen, Germany.
| |
Collapse
|
5
|
Kuehnast T, Abbott C, Pausan MR, Pearce DA, Moissl-Eichinger C, Mahnert A. The crewed journey to Mars and its implications for the human microbiome. MICROBIOME 2022; 10:26. [PMID: 35125119 PMCID: PMC8818331 DOI: 10.1186/s40168-021-01222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
A human spaceflight to Mars is scheduled for the next decade. In preparation for this unmatched endeavor, a plethora of challenges must be faced prior to the actual journey to Mars. Mission success will depend on the health of its crew and its working capacity. Hence, the journey to Mars will also depend on the microbiome and its far-reaching effects on individual crew health, the spaceship's integrity, and food supply. As human beings rely on their microbiome, these microbes are essential and should be managed to ensure their beneficial effects outweigh potential risks. In this commentary, we focus on the current state of knowledge regarding a healthy (gut) microbiome of space travelers based on research from the International Space Station and simulation experiments on Earth. We further indicate essential knowledge gaps of microbial conditions during long-term space missions in isolated confined space habitats or outposts and give detailed recommendations for microbial monitoring during pre-flight, in-flight, and post-flight. Finally, the conclusion outlines open questions and aspects of space traveler's health beyond the scope of this commentary. Video Abstract.
Collapse
Affiliation(s)
- Torben Kuehnast
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Carmel Abbott
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Manuela R Pausan
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Christine Moissl-Eichinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Alexander Mahnert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|