1
|
Hashim NT, Babiker R, Rahman MM, Chaitanya NCSK, Mohammed R, Dasnadi SP, Gismalla BG. Gum Arabic as a potential candidate in quorum quenching and treatment of periodontal diseases. FRONTIERS IN ORAL HEALTH 2024; 5:1459254. [PMID: 39439926 PMCID: PMC11493777 DOI: 10.3389/froh.2024.1459254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Periodontal diseases are chronic inflammatory conditions influenced by bacterial biofilm formation and host immune responses, affecting millions worldwide. Traditional treatments like mechanical debridement and systemic antibiotics often face limitations, including biofilm resilience and antibiotic resistance. Gum Arabic (GA), a natural exudate from Acacia trees, presents a promising alternative with its anti-biofilm and anti-inflammatory properties. This review highlights the role of GA in periodontal therapy, particularly its ability to interfere with quorum sensing (QS) pathways, specifically the AI-2 signaling system used by key periodontal pathogens such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. By disrupting QS, GA inhibits biofilm formation, reduces bacterial virulence, and promotes a balanced oral microbiome. GA's prebiotic properties also encourage the growth of beneficial bacteria, enhancing the host's immune response while preserving the systemic microbiome. Clinical studies demonstrate GA's effectiveness as an adjunct in periodontal therapy, with significant reductions in plaque accumulation, gingival inflammation, and bleeding. This highlights GA's potential as a natural therapeutic agent, offering an effective, antibiotic-sparing option in managing periodontal disease. However, further research is warranted to fully establish GA's role in comprehensive periodontal care and its long-term benefits.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Mohammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Nallan C. S. K. Chaitanya
- Department of Oral Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Riham Mohammed
- Department of Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Shahistha Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras al-Khaimah, United Arab Emirates
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
2
|
Atta L, Mushtaq M, Siddiqui AR, Khalid A, Ul-Haq Z. Targeting glucosyltransferases to combat dental caries: Current perspectives and future prospects. Int J Biol Macromol 2024; 278:134645. [PMID: 39128764 DOI: 10.1016/j.ijbiomac.2024.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The emergence of antimicrobial resistance within bacterial communities poses formidable challenges to existing therapeutic strategies aimed at mitigating biofilm-mediated infections. Recent advancements in this domain have spurred the development of targeted antimicrobial agents, designed to selectively eradicate the primary etiological agents while preserving the beneficial microbial diversity of the oral cavity. Targeting glucosyltransferases (GTFs), which play crucial roles in dental biofilm formation, offers a precise strategy to inhibit extracellular polysaccharide synthesis without compromising oral microbiota. This review article delves into the intricate mechanisms underlying dental caries, with a specific focus on the role of GTFs, enzymes produced by S. mutans. It further provides an overview of current research on GTF inhibitors, exploring their mechanisms of action, efficacy, and potential applications in clinical practice. Furthermore, it discusses the challenges and opportunities in the development of novel GTF inhibitors, emphasizing the need for innovative approaches to combat biofilm-mediated oral diseases effectively.
Collapse
Affiliation(s)
- Lubna Atta
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Assad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
3
|
Fine DH, Schreiner H, Diehl SR. A Rose by Any Other Name: The Long Intricate History of Localized Aggressive Periodontitis. Pathogens 2024; 13:849. [PMID: 39452721 PMCID: PMC11510386 DOI: 10.3390/pathogens13100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
This review addresses the recent World Workshop Consensus Conference (WWCC) decision to eliminate Localized Aggressive Periodontitis (LAgP) in young adults as a distinct form of periodontitis. A "Consensus" implies widespread, if not unanimous, agreement among participants. However, a significant number of attendees were opposed to the elimination of the LAgP classification. The substantial evidence supporting a unique diagnosis for LAgP includes the (1) incisor/molar pattern of disease, (2) young age of onset, (3) rapid progression of attachment and bone loss, (4) familial aggregation across multiple generations, and (5) defined consortium of microbiological risk factors including Aggregatibacter actinomycetemcomitans. Distinctive clinical signs and symptoms of LAgP are presented, and the microbial subgingival consortia that precede the onset of signs and symptoms are described. Using Bradford-Hill guidelines to assess causation, well-defined longitudinal studies support the unique microbial consortia, including A. actinomycetemcomitans as causative for LAgP. To determine the effects of the WWCC elimination of LAgP on research, we searched three publication databases and discovered a clear decrease in the number of new publications addressing LAgP since the new WWCC classification. The negative effects of the WWCC guidelines on both diagnosis and treatment success are presented. For example, due to the localized nature of LAgP, the practice of averaging mean pocket depth reduction or attachment gain across all teeth masks major changes in disease recovery at high-risk tooth sites. Reinstating LAgP as a distinct disease entity is proposed, and an alternative or additional way of measuring treatment success is recommended based on an assessment of the extension of the time to relapse of subgingival re-infection. The consequences of the translocation of oral microbes to distant anatomical sites due to ignoring relapse frequency are also discussed. Additional questions and future directions are also presented.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA; (H.S.); (S.R.D.)
| | | | | |
Collapse
|
4
|
Moellmann HL, Kommer K, Karnatz N, Pfeffer K, Henrich B, Rana M. Molecular Genetic Analysis of Perioperative Colonization by Infection-Related Microorganisms in Patients Receiving Intraoral Microvascular Grafts. J Clin Med 2024; 13:4103. [PMID: 39064142 PMCID: PMC11278416 DOI: 10.3390/jcm13144103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: In oral and maxillofacial surgery, the reconstruction of defects often involves the transfer of skin tissue into the oral cavity utilizing microvascular grafts. This study investigates postoperative changes in microbial colonization following intraoral microvascular transplantation, as well as potential influencing factors. Methods: In 37 patients undergoing intraoral reconstructions, pre- and postoperative swabs were taken from the donor and recipient regions to quantify the seven selected marker bacteria using TaqMan PCRs. Patient-specific factors and clinical data were also recorded. Results: The infection-associated Acinetobacter baumannii tended to decrease postoperatively, while the infectious pathogens Pseudomonas aeruginosa, Enterococcus faecalis and the family of Enterobacteriaceae showed a postoperative increase without being directly associated with a clinical infection. Streptococcus mitis showed a significant postoperative decrease on buccal mucosa and increase on the graft surface (oral dysbiosis) and was significantly reduced or displaced by other bacteria (e.g., Mycoplasma salivarium, positive selection) when treated with ampicillin/sulbactam. Conclusions: The cutaneous microbiome of the graft adapts to the local intraoral environment. Postoperative shifts in oral bacterial colonization and an increase in infection-relevant bacteria were observed. These perioperative changes in colonization are also influenced by the administration of ampicillin/sulbactam. Consequently, single doses of antibiotics appear to be more beneficial compared to longer-term preventive use.
Collapse
Affiliation(s)
- Henriette Louise Moellmann
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Katharina Kommer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Nadia Karnatz
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Majeed Rana
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| |
Collapse
|
5
|
B N, Narayanarao G, T R S, B RS, Chandrasekaran D, Rakeeba F. Oral Commensals in Healthy Individuals: A Clinicocytological Study. Cureus 2024; 16:e65317. [PMID: 39184602 PMCID: PMC11344192 DOI: 10.7759/cureus.65317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Each human being has a specific group of microorganisms that are necessary for both sustaining health and causing illness. Normally, these microorganisms maintain bio-communalism, do not harm the host, and lead to a state known as symbiosis or eubiosis. The commensal nature of these bacteria is always maintained in symbiosis and attains pathogenic potential when there is an imbalance between host immunity and microorganisms. Our study focuses on the identification and differentiation of the various commensals present in the oral cavity of healthy individuals over a given period of time. Aims and objectives This study aims to: (i) identify various commensal bacterial species present in the oral cavity; (ii) differentiate each commensal bacterial species present in the oral cavity of healthy individuals using cytological and culturing methods; (iii) identify the presence of different types of commensal bacterial species in the same individuals with the specific time intervals; (iv) compare and correlate the presence or absence of bacterial species present as a commensal in both male and female; (v) identify and characterize the commensal bacterial species present in the oral cavity of healthy individuals; (vi) investigate the consistency of commensal bacterial species presence over time and between genders. Methodology We included sixty healthy individuals between the ages of 20 and 24 from both genders, took buccal smears once every two days for ten days, stained them with Gram stain, and grew them in blood agar and Mac Conkey agar. Results The most common commensals include Gram-positive cocci, and among them, Coagulase-negative staphylococcus species (85%) are predominant, followed by Staphylococcus aureus (13.33%), and Streptococcus species (1.67%). The presence of colonies remains the same in all three samples obtained from the same healthy individuals. Conclusion Loss of balance between commensals and pathogens can lead to dysbiosis, which results in disease.
Collapse
Affiliation(s)
- Nandhinipriya B
- Oral and Maxillofacial Pathology, CSI College of Dental Science and Research, Madurai, IND
| | - Gururaj Narayanarao
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| | - Sabarinath T R
- Oral and Maxillofacial Pathology, CSI College of Dental Science and Research, Madurai, IND
| | - Rethika Singh B
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| | | | - Fadhila Rakeeba
- Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, IND
| |
Collapse
|
6
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
7
|
Ahmad P, Moussa DG, Siqueira WL. Metabolomics for dental caries diagnosis: Past, present, and future. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38940512 DOI: 10.1002/mas.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Dental caries, a prevalent global infectious condition affecting over 95% of adults, remains elusive in its precise etiology. Addressing the complex dynamics of caries demands a thorough exploration of taxonomic, potential, active, and encoded functions within the oral ecosystem. Metabolomic profiling emerges as a crucial tool, offering immediate insights into microecosystem physiology and linking directly to the phenotype. Identified metabolites, indicative of caries status, play a pivotal role in unraveling the metabolic processes underlying the disease. Despite challenges in metabolite variability, the use of metabolomics, particularly via mass spectrometry and nuclear magnetic resonance spectroscopy, holds promise in caries research. This review comprehensively examines metabolomics in caries prevention, diagnosis, and treatment, highlighting distinct metabolite expression patterns and their associations with disease-related bacterial communities. Pioneering in approach, it integrates singular and combinatory metabolomics methodologies, diverse biofluids, and study designs, critically evaluating prior limitations while offering expert insights for future investigations. By synthesizing existing knowledge, this review significantly advances our comprehension of caries, providing a foundation for improved prevention and treatment strategies.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dina G Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
9
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Antoniadou M, Rozos G, Vaou N, Zaralis K, Ersanli C, Alexopoulos A, Dadamogia A, Varzakas T, Tzora A, Voidarou C(C. Comprehensive Bio-Screening of Phytochemistry and Biological Capacity of Oregano ( Origanum vulgare) and Salvia triloba Extracts against Oral Cariogenic and Food-Origin Pathogenic Bacteria. Biomolecules 2024; 14:619. [PMID: 38927023 PMCID: PMC11201555 DOI: 10.3390/biom14060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study utilized phytochemical screening to conduct the qualitative analysis of plant extracts, aiming to identify various classes of secondary metabolites. Moreover, the antibacterial activity of different types of Oregano vulgare and Salvia triloba extracts was determined. To achieve the aim of this study, aqueous, ethanolic, and enzymatic extracts were prepared and screened for phytochemical capacity and antioxidant activities. The determination of the antibacterial activity included phenotypic screening of antibiotic susceptibility pattern of oral and food pathogenic bacterial strains, determination of the minimum inhibitory concentration and minimum bactericidal concentration-via microdilution broth test and in vitro valuation of antibacterial efficacies-of the anti-biofilm properties of the studied herbal extractions. Results: Our study evaluated the phytochemical composition and the antioxidant, antibacterial, and anti-biofilm properties of O. vulgare and S. triloba extracts. The analyzed samples contained bioactive compounds, such as phenolics and flavonoids, contributing to the observed strong antioxidant effect. Furthermore, they exhibited notable activity against oral biofilm formation and demonstrated significant antibacterial efficacy against dental caries' microorganisms as well as food pathogens. Despite methodological variations, all extracts showed significant antioxidant capacity and promising antibacterial activity against various pathogens, including resistant strains, while also inhibiting biofilm formation. Although limited to two plant species and facing methodological constraints, this study lays the groundwork for future research, indicating the therapeutic potential of O. vulgare and S. triloba extracts. Further exploration is needed to report on underlying mechanisms and validate efficacy through clinical trials.
Collapse
Affiliation(s)
- Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Executive Mastering Program in Systemic Management (CSAP), University of Piraeus, 18451 Piraeus, Greece
| | - Georgios Rozos
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.D.); (A.T.)
| | - Natalia Vaou
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Zaralis
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
| | - Caglar Ersanli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.D.); (A.T.)
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Aikaterini Dadamogia
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.D.); (A.T.)
| | - Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.D.); (A.T.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.D.); (A.T.)
| |
Collapse
|
11
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Cerkezi S, Nakova M, Gorgoski I, Ferati K, Bexheti-Ferati A, Palermo A, Inchingolo AD, Ferrante L, Inchingolo AM, Inchingolo F, Dipalma G. The Role of Sulfhydryl (Thiols) Groups in Oral and Periodontal Diseases. Biomedicines 2024; 12:882. [PMID: 38672236 PMCID: PMC11048028 DOI: 10.3390/biomedicines12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
AIM The sulfhydryl (thiols) group of glutathione plays an important role in the neutralization of foreign organic compounds and the reduction in peroxides. The purpose of the study is to evaluate the concentration of sulfhydryl groups in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, and to examine the differences between these groups. MATERIAL AND METHODS To assess the concentration of sulfhydryl groups (thiols) in the gingival tissue of healthy individuals and those with gingivitis or periodontitis, we used spectrophotometric analysis using dithionitrobenzoate (DTNB) as a reagent to measure the accessible sulfhydryl groups present in gingival tissue proteins. The sample was divided into three distinct groups: individuals with periodontal health, gingivitis, and periodontitis, and different indices were used to assess the periodontal status of the participants. Next, a statistical analysis was conducted to compare the concentrations of sulfhydryl groups among the different groups of patients. CONCLUSIONS The results of this study showed significantly decreased levels of sulfhydryl (thiols) groups in gingival tissue from patients with gingivitis and periodontitis, compared with healthy people (control group). These results confirm the role of sulfhydryl (thiols) groups in defense against free radicals. They share a significant role in detoxification, signal transduction, apoptosis, and various other functions at the molecular level.
Collapse
Affiliation(s)
- Sabetim Cerkezi
- Orthodontic Department, Dentristy School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Marija Nakova
- Periodontology Department, Dentistry School, Medical Science Faculty, State University of Tetova, 1220 Tetova, North Macedonia;
| | - Icko Gorgoski
- Faculty of Natural Sciences and Mathematics, University St. Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - Kenan Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Arberesha Bexheti-Ferati
- Faculty of Medicine, State University of Tetova, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (L.F.); (G.D.)
| |
Collapse
|
13
|
Ovsepian A, Kardaras FS, Skoulakis A, Hatzigeorgiou AG. Microbial signatures in human periodontal disease: a metatranscriptome meta-analysis. Front Microbiol 2024; 15:1383404. [PMID: 38659984 PMCID: PMC11041396 DOI: 10.3389/fmicb.2024.1383404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
The characterization of oral microbial communities and their functional potential has been shaped by metagenomics and metatranscriptomics studies. Here, a meta-analysis of four geographically and technically diverse oral shotgun metatranscriptomics studies of human periodontitis was performed. In total, 54 subgingival plaque samples, 27 healthy and 27 periodontitis, were analyzed. The core microbiota of the healthy and periodontitis group encompassed 40 and 80 species, respectively, with 38 species being common to both microbiota. The differential abundance analysis identified 23 genera and 26 species, that were more abundant in periodontitis. Our results not only validated previously reported genera and species associated with periodontitis with heightened statistical significance, but also elucidated additional genera and species that were overlooked in the individual studies. Functional analysis revealed a significant up-regulation in the transcription of 50 gene families (UniRef-90) associated with transmembrane transport and secretion, amino acid metabolism, surface protein and flagella synthesis, energy metabolism, and DNA supercoiling in periodontitis samples. Notably, the overwhelming majority of the identified gene families did not exhibit differential abundance when examined across individual datasets. Additionally, 4 bacterial virulence factor genes, including TonB dependent receptor from P. gingivalis, surface antigen BspA from T. forsynthia, and adhesin A (PsaA) and Type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the Streptococcus genus, were also found to be significantly more transcribed in periodontitis group. Microbial co-occurrence analysis demonstrated that the periodontitis microbial network was less dense compared to the healthy network, but it contained more positive correlations between the species. Furthermore, there were discernible disparities in the patterns of interconnections between the species in the two networks, denoting the rewiring of the whole microbial network during the transition to the disease state. In summary, our meta-analysis has provided robust insights into the oral active microbiome and transcriptome in both health and disease.
Collapse
Affiliation(s)
- Armen Ovsepian
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Skoulakis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
14
|
Dagli N, Sinha S, Haque M, Kumar S. Exploring the Perspective of Oral Microbiome Studies in PubMed Database: A Bibliometric Appraisal. Cureus 2024; 16:e53824. [PMID: 38332998 PMCID: PMC10851814 DOI: 10.7759/cureus.53824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
This research aims to postulate an exhaustive sketch of the current research background on the oral microbiome to emphasize prevailing research trends. On November 25, 2023, a digital exploration was conducted on the PubMed platform. The search strategy employed was- '(Microbiome, Microbiota, Microorganisms, Bacteria, Virus, Fungi) AND (Oral, Dental, Saliva, Plaque, Gingival Crevicular Fluid)'. Inclusive criteria comprised review articles, clinical trials, and meta-analyses. The Biblioshiny app and VOSviewer software were used to create and visualize bibliometric maps for network, thematic, and factorial analyses. The PubMed database search unveiled 215,068 published research studies on the oral microbiome, indicating a fluctuating publication pattern with an all-embracing mounting trajectory. Notably, there was a substantial increase in publications in 2020 and 2021, succeeded by a marked decline in 2022 and 2023. Sichuan University and the International Journal of Molecular Sciences emerged as the most prolific contributors among organizations and relevant sources. Keyword analysis revealed a research emphasis on the COVID-19 pandemic and the SARS-CoV-2 virus since 2019. Thematic mapping categorized key terms into motor, primary, niche, and emerging themes. The emerging terms identified are viral immunogenicity, antibodies, and vaccines, which support the revelation that COVID-19 and related terms will be the most pertinent subjects in oral microbiome studies in the future. Factorial analysis delineated the relationships between topics and subtopics in this domain.
Collapse
Affiliation(s)
- Namrata Dagli
- Dentistry, Karnavati Scientific Research Center (KSRC) Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Dentistry, Karnavati Scientific Research Center (KSRC) Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati Scientific Research Center (KSRC) Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
15
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Menditti D, Santagata M, Imola G, Staglianò S, Vitagliano R, Boschetti CE, Inchingolo AM. Personalized Medicine in Oral Oncology: Imaging Methods and Biological Markers to Support Diagnosis of Oral Squamous Cell Carcinoma (OSCC): A Narrative Literature Review. J Pers Med 2023; 13:1397. [PMID: 37763165 PMCID: PMC10532745 DOI: 10.3390/jpm13091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
For decades, oral squamous cell carcinoma (OSCC) has been one of the most prevalent and mortal cancers worldwide. The gold standard for OSCC diagnosis is still histopathology but this narrative multidisciplinary review has the aim to explore the literature about conventional OSCC prognostic indicators related to the pTNM stage at the diagnosis such as the depth of invasion and the lymphovascular invasion associated with distant metastasis as indicators of poor life expectancy. Despite its multifactorial nature and recognizable precursors, its diagnosis at the early stages is still challenging. We wanted to highlight the importance of the screening as a primary weapon that a stomatologist should consider, intercepting all at-risk conditions and lesions associated with OSCC and its early stages. This narrative review also overviews the most promising imaging techniques, such as CT, MRI, and US-echography, and their application related to clinical and surgical practice, but also the most-investigated prognostic and diagnostic tissue and salivary biomarkers helpful in OSCC diagnosis and prognostic assessment. Our work highlighted remarkable potential biomarkers that could have a leading role in the future. However, we are still far from defining an appropriate and concrete protocol to apply in clinical practice. The hope is that the present and future research will overcome these limitations to benefit patients, clinicians, and welfare.
Collapse
Affiliation(s)
- Dardo Menditti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Mario Santagata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Gianmaria Imola
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Samuel Staglianò
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Rita Vitagliano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Ciro Emiliano Boschetti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | | |
Collapse
|
17
|
Lamont RJ, Hajishengallis G, Koo H. Social networking at the microbiome-host interface. Infect Immun 2023; 91:e0012423. [PMID: 37594277 PMCID: PMC10501221 DOI: 10.1128/iai.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Ferrillo M, Giudice A, Migliario M, Renó F, Lippi L, Calafiore D, Marotta N, de Sire R, Fortunato L, Ammendolia A, Invernizzi M, de Sire A. Oral-Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int J Mol Sci 2023; 24:4626. [PMID: 36902056 PMCID: PMC10003001 DOI: 10.3390/ijms24054626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial products spreading into the systemic circulation and reaching distant organs, while periodontal diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations might play a role in the pathogenesis of several autoimmune and inflammatory diseases including arthritis, considering the role of the gut-joint axis in the regulation of molecular pathways involved in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflammation typical of periodontal diseases and arthritis. This literature overview aims to summarize state-of-the-art ideas about linkages among oral-gut microbiota, periodontal diseases, and arthritis, while investigating the role of probiotics as a potential therapeutic intervention for the management of both oral diseases and musculoskeletal disorders.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mario Migliario
- Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Filippo Renó
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, University of Eastern Piedmont, 28100 Novara, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy
| | - Leonzio Fortunato
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
19
|
Tang J, Wang Z. Genome wide analysis of dexamethasone stimulated mineralization in human dental pulp cells by RNA sequencing. J Gene Med 2023; 25:e3466. [PMID: 36464925 DOI: 10.1002/jgm.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human dental pulp cells (hDPCs) contain mesenchymal stem cells and are therefore indispensible for reparative dentin formation. Here, we present a pilot study of transcriptomic profiles of mineralized hDPCs isolated from sound human maxillary third molars. We observed altered gene expression of hDPCs between control (dexamethasone free) and experimental (dexamethasone 1 nm) groups. Differential expression analysis revealed up-regulation of several inflammation and mineralization-related genes in the experimental group. After a Gene Ontology analysis for predicting genes involved in biological process, cellular component and molecular function, we found enrichment of genes related to protein binding. Based on the results of Kyoto Encylopedia of Genes and Genomes pathway analysis, it is suggested up-regulated genes in mineralized hDPCs were mostly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, fluid shear stress and the atherosclerosis signaling pathway, etc. Importantly, Gene Set Enrichment Analysis revealed dexamethasone was positively related to the Janus kinase/signal transducer and activator of transcription, MAPK and Notch signaling pathway. Moreover, it was suggested that dexamethasone regulates signaling pathway in pluripotency of stem cells. Collectively, our work highlights transcriptome level gene regulation and intercellular interactions in mineralized hDPCs. The database produced in the present study paves the way for further investigations looking to explore genes that are involved in dental pulp cells mineralization.
Collapse
Affiliation(s)
- Jia Tang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Matsubara VH, Fakhruddin KS, Ngo H, Samaranayake LP. Probiotic Bifidobacteria in Managing Periodontal Disease: A Systematic Review. Int Dent J 2022; 73:11-20. [PMID: 36535806 PMCID: PMC9875235 DOI: 10.1016/j.identj.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although various probiotic organisms have been evaluated for their utility in the management of periodontitis, their strain-specific mechanisms of action are still unclear. We aimed to systematically review the effect of bifidobacterial probiotics on periodontopathogens and host immune responses in periodontal diseases. An electronic search of articles published until June 2022 in Medline, PubMed, Web of Science, and Cochrane Library databases was performed. Randomised controlled trials (RCTs) and in vitro and animal studies were assessed, and the data regarding antimicrobial properties, immunomodulation, and clinical outcomes were analysed. A total of 304 studies were screened, but only 3 RCTs and 6 animal and in vitro studies met the inclusion criteria. The use of different strains of bifidobacteria led to (1) a reduction of key players of the red complex periodontopathogens; (2) reduced levels of pro-inflammatory cytokines (eg, interleukin [IL]1-β and IL-8) and higher levels of anti-inflammatory cytokines (IL-10); (3) enhanced levels of osteoprotegerin and reduced levels of receptor activator of nuclear factor kappa-B ligand; and (4) a reduction of the dental plaque, bleeding on probing, alveolar bone loss, and clinical attachment loss. Bifidobacterial probiotic adjuvant supplementation, especially with Bifidobacterium animalis subspecies lactis, appears to help improve clinical periodontal parameters and develop a healthy plaque microbiome through microbiological and immunomodulatory pathways. Further human and animal studies are warranted prior to the therapeutic use of bifidobacteria in the routine management of periodontal infections.
Collapse
Affiliation(s)
- Victor Haruo Matsubara
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia,Corresponding author. Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, Perth, WA 6009, Australia.
| | - Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Hien Ngo
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia
| | - Lakshman P. Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
21
|
Jiménez-Gayosso SI, Morales-Luckie RA, Robles-Bermeo NL, Hernández-Martínez CT, Villalobos-Rodelo JJ, Islas-Zarazúa R, Navarrete-Hernández JDJ, Patiño-Marín N, Medina-Solís CE, Maupomé G. Changes in oral pH before and after placing preformed metal crowns in primary dentition of Mexican children. Technol Health Care 2022; 31:969-976. [PMID: 36442164 DOI: 10.3233/thc-220433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Prefabricated metal crowns (PMCs) have been widely used in pediatric dentistry due to their great success in various clinical situations. However, it is important to know the local effects, such as changes in pH in the oral environment. OBJECTIVE: To evaluate the pH variations before and after placement of PMCs. METHODS: A quasi-experimental study (before and after) was performed with 32 pediatric patients who needed rehabilitation with PMCs at a pediatric dentistry clinic in a public university. Measurements were made using a pH potentiometer before PMC placement, one week after, and one month after placement. ANOVA and Pearson correlation were performed in SPSS. RESULTS: The average age of the participants was 5.9 ± 1.6 years, and 53.1% were female. The average pH before, one week after, and one month after crown placement was 7.46 ± 0.37, 7.00 ± 0.32, and 7.1 ± 0.19, respectively. Significant differences (p< 0.05) were observed between the three pH measurements. We found differences when comparing the basal pH values to those at one week (p= 0.001) and one month (p= 0.002). CONCLUSION: Although there were statistically significant differences in the pH change values before and after the placement of crowns, these differences may not have a clinical impact.
Collapse
Affiliation(s)
- Sandra Isabel Jiménez-Gayosso
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Mexico
- Advanced Studies and Research Centre in Dentistry “Dr. Keisaburo Miyata”, Faculty of Dentistry, Autonomous University State of Mexico, Toluca, Mexico
- School of Dentistry, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Raúl Alberto Morales-Luckie
- Sustainable Chemistry UAEMex-UNAM Research Center, Faculty of Chemistry, Autonomous University State of Mexico, Toluca, Mexico
| | - Norma Leticia Robles-Bermeo
- Advanced Studies and Research Centre in Dentistry “Dr. Keisaburo Miyata”, Faculty of Dentistry, Autonomous University State of Mexico, Toluca, Mexico
| | - César Tadeo Hernández-Martínez
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Mexico
- Advanced Studies and Research Centre in Dentistry “Dr. Keisaburo Miyata”, Faculty of Dentistry, Autonomous University State of Mexico, Toluca, Mexico
- School of Dentistry, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Rosalina Islas-Zarazúa
- Advanced Studies and Research Centre in Dentistry “Dr. Keisaburo Miyata”, Faculty of Dentistry, Autonomous University State of Mexico, Toluca, Mexico
| | - José de Jesús Navarrete-Hernández
- Advanced Studies and Research Centre in Dentistry “Dr. Keisaburo Miyata”, Faculty of Dentistry, Autonomous University State of Mexico, Toluca, Mexico
| | - Nuria Patiño-Marín
- School of Dentistry, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Carlo Eduardo Medina-Solís
- Academic Area of Dentistry of Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca, Mexico
- School of Dentistry, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Gerardo Maupomé
- Richard M. Fairbanks School of Public Health, Indiana University-Purdue University, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| |
Collapse
|
22
|
Idir F, Van Ginneken S, Coppola GA, Grenier D, Steenackers HP, Bendali F. Origanum vulgare ethanolic extracts as a promising source of compounds with antimicrobial, anti-biofilm, and anti-virulence activity against dental plaque bacteria. Front Microbiol 2022; 13:999839. [PMID: 36406439 PMCID: PMC9668103 DOI: 10.3389/fmicb.2022.999839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023] Open
Abstract
Dental caries and periodontal diseases remain a challenge for oral health, especially given the lack of effective and safe treatment options that are currently available. Against the backdrop of an ongoing antimicrobial resistance crisis, a renewed interest in traditional medicinal plants as a potential source of new bioactive compounds has surfaced. In this context, we systematically screened the antimicrobial and anti-biofilm activities of both ethanolic and aqueous extracts of nine Algerian medicinal plants (Artemisia herba alba, Centaurium erythraea, Juglans regia, Laurus nobilis, Matricaria recutita, Mentha pulegium, Mentha piperita, Origanum vulgare and Taraxacum officinale). To evaluate the activity spectrum of the extracts, the screening was carried out against an extensive collection of Streptococcus, Enterococcus and Lacticaseibacillus isolates recovered from dental plaques of Algerian patients. Broad-spectrum antimicrobial and anti-biofilm properties were observed, especially among ethanolic extracts, which marks them as a promising source for bioactive compounds to control oral biofilms. The ethanolic extract of O. vulgare, which showed the most promising effects in the initial screening, was further characterized. We first verified the biocompatibility of this extract using human oral keratinocytes and selected a range of non-cytotoxic concentrations (0.195-0.781 mg/ml) to further validate its anti-biofilm and anti-virulence potential. At these concentrations, the extract not only prevented biofilm formation (10.04 ± 0.75-87.91 ± 9.08% of reduction) of most dental plaque isolates on a polystyrene surface, but also significantly reduced their adherence to hydroxyapatite (34.58 ± 9.09-62.77 ± 0.95%). Moreover, the extract showed curative potential against mature biofilms grown under conditions mimicking the oral niche. In addition to its anti-biofilm properties, we observed an inhibition of glucosyltransferase activity, a reduction in acidogenesis and a downregulation in the expression of multiple virulence-associated genes for extract-treated samples. Since anti-virulence properties are more robust to the development of resistance, they provide an attractive complementation to the antimicrobial activities of the extract. Thymol was identified as an important active compound of the extract using GC-MS analysis, but synergy with other compounds was also detected, suggesting a potential advantage of using the whole extract over purified thymol. Further research into the bioactive compounds of the O. vulgare ethanolic extract could yield novel products to fight dental caries.
Collapse
Affiliation(s)
- Fouzia Idir
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Sybren Van Ginneken
- MiCA Lab, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec, QC, Canada
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium,*Correspondence: Hans Steenackers,
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria,Farida Bendali,
| |
Collapse
|
23
|
Zhang JS, Chu CH, Yu OY. Oral Microbiome and Dental Caries Development. Dent J (Basel) 2022; 10:184. [PMID: 36285994 PMCID: PMC9601200 DOI: 10.3390/dj10100184] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Dental caries remains the most prevalent oral disease worldwide. The development of dental caries is highly associated with the microbiota in the oral cavity. Microbiological research of dental caries has been conducted for over a century, with conventional culture-based methods and targeted molecular methods being used in order to identify the microorganisms related to dental caries. These methods' major limitation is that they can identify only part of the culturable microorganisms in the oral cavity. Introducing sequencing-based technology and bioinformatics analysis has boosted oral microbiome research and greatly expanded the understanding of complex oral microbiology. With the continuing revolution of molecular technologies and the accumulated sequence data of the oral microbiome, researchers have realized that microbial composition alone may be insufficient to uncover the relationship between caries and the microbiome. Most updated evidence has coupled metagenomics with transcriptomics and metabolomics techniques in order to comprehensively understand the microbial contribution to dental caries. Therefore, the objective of this article is to give an overview of the research of the oral microbiome and the development of dental caries. This article reviews the classical concepts of the microbiological aspect of dental caries and updates the knowledge of caries microbiology with the results of current studies on the oral microbiome. This paper also provides an update on the caries etiological theory, the microorganisms related to caries development, and the shifts in the microbiome in dental caries development.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Koca-Ünsal RB, Şehirli AÖ, Sayıner S, Aksoy U. Relationship of NLRP3 inflammasome with periodontal, endodontic and related systemic diseases. Mol Biol Rep 2022; 49:11123-11132. [DOI: 10.1007/s11033-022-07894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
25
|
Strategies to Combat Caries by Maintaining the Integrity of Biofilm and Homeostasis during the Rapid Phase of Supragingival Plaque Formation. Antibiotics (Basel) 2022; 11:antibiotics11070880. [PMID: 35884135 PMCID: PMC9312143 DOI: 10.3390/antibiotics11070880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria in the oral cavity, including commensals and opportunistic pathogens, are organized into highly specialized sessile communities, coexisting in homeostasis with the host under healthy conditions. A dysbiotic environment during biofilm evolution, however, allows opportunistic pathogens to become the dominant species at caries-affected sites at the expense of health-associated taxa. Combining tooth brushing with dentifrices or rinses combat the onset of caries by partially removes plaque, but resulting in the biofilm remaining in an immature state with undesirables’ consequences on homeostasis and oral ecosystem. This leads to the need for therapeutic pathways that focus on preserving balance in the oral microbiota and applying strategies to combat caries by maintaining biofilm integrity and homeostasis during the rapid phase of supragingival plaque formation. Adhesion, nutrition, and communication are fundamental in this phase in which the bacteria that have survived these adverse conditions rebuild and reorganize the biofilm, and are considered targets for designing preventive strategies to guide the biofilm towards a composition compatible with health. The present review summarizes the most important advances and future prospects for therapies based on the maintenance of biofilm integrity and homeostasis as a preventive measure of dysbiosis focused on these three key factors during the rapid phase of plaque formation.
Collapse
|
26
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
27
|
Sampaio C, Deng D, Exterkate R, Zen I, Hosida TY, Monteiro DR, Delbem ACB, Pessan JP. Effects of sodium hexametaphosphate microparticles or nanoparticles on the growth of saliva-derived microcosm biofilms. Clin Oral Investig 2022; 26:5733-5740. [PMID: 35585326 DOI: 10.1007/s00784-022-04529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study evaluated the effects of sodium hexametaphosphate microparticles (HMPmicro) or nanoparticles (HMPnano) on the growth of saliva-derived microcosm biofilms MATERIALS AND METHODS: Saliva-derived biofilms were formed on glass coverslips for 24 h. Thereafter, Streptococcus mutans (C180-2) was incorporated or not into the biofilms. From that time point onwards, solutions containing 0.2% HMPmicro or HMPnano, combined or not with 220 ppm F, were constantly present in the culture medium. In addition, 220 ppm F alone (220F) and McBain medium without any compound were also tested as positive and negative controls (CTL), respectively. After 96 h, the biofilms were plated on anaerobic blood agar or sucrose agar bacitracin for total and S. mutans CFU-counting, respectively. Biofilms' lactic acid production was analysed spectrophotometrically. Data were submitted to ANOVA or Kruskal-Wallis' tests, followed by Student-Newman-Keuls' test (p<0.05; n=12). RESULTS HMPmicro or HMPnano led to significantly lower lactic acid production, and significant reductions in total CFU-counting in microcosm biofilms, supplemented or not with S. mutans, in comparison to both controls, with significant differences between 220F and CTL. No significant differences were observed among the groups treated with HMPmicro or HMPnano (with or without F). The same trend was seen for S. mutans CFU-counting, in biofilms supplemented with S. mutans. CONCLUSIONS HMP significantly reduced total and S. mutans CFU counts, as well as lactic acid production by saliva-derived microcosm biofilms. CLINICAL RELEVANCE These findings in saliva-derived microcosm biofilms suggest that HMP stands as a promising alternative for the control of cariogenic biofilms.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Exterkate
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Igor Zen
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil
- Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Rua José Bonifácio, 1193, 16015-050, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
28
|
Chopra A, Jayasinghe TN, Eberhard J. Are Inflamed Periodontal Tissues Endogenous Source of Advanced Glycation End-Products (AGEs) in Individuals with and without Diabetes Mellitus? A Systematic Review. Biomolecules 2022; 12:biom12050642. [PMID: 35625570 PMCID: PMC9138899 DOI: 10.3390/biom12050642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end-products (AGEs) are heterogeneous compounds formed when excess sugars condense with the amino groups of nucleic acids and proteins. Increased AGEs are associated with insulin resistance and poor glycemic control. Recently, inflamed periodontal tissues and certain oral bacteria were observed to increase the local and systemic AGE levels in both normoglycemic and hyperglycemic individuals. Although hyperglycemia induced AGE and its effect on the periodontal tissues is known, periodontitis as an endogenous source of AGE formation is not well explored. Hence, this systematic review is aimed to explore, for the first time, whether inflamed periodontal tissues and periodontal pathogens have the capacity to modulate AGE levels in individuals with or without T2DM and how this affects the glycemic load. Six electronic databases were searched using the following keywords: (Periodontitis OR Periodontal disease OR Periodontal Inflammation) AND (Diabetes mellitus OR Hyperglycemia OR Insulin resistance) AND Advanced glycation end products. The results yielded 1140 articles, of which 13 articles were included for the review. The results showed that the mean AGE levels in gingival crevicular fluid was higher in individuals with diabetes mellitus and periodontitis (521.9 pg/mL) compared to healthy individuals with periodontitis (234.84 pg/mL). The serum AGE levels in normoglycemic subjects having periodontitis was higher compared to those without periodontitis (15.91 ng/mL vs. 6.60 ng/mL). Tannerella forsythia, a common gram-negative anaerobe periodontal pathogen in the oral biofilm, was observed to produce methylglyoxal (precursor of AGE) in the gingival tissues. Increased AGE deposition and activate of AGE receptors was noted in the presence of periodontitis in both normoglycemic and hyperglycemic individuals. Hence, it can be concluded that periodontitis can modulate the local and systemic levels of AGE levels even in absence of hyperglycemia. This explains the bidirectional relationship between periodontitis and development of prediabetes, incident diabetes, poor glycemic control, and insulin resistance.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India
- Correspondence:
| | - Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Eriksson K, Lundmark A, Delgado LF, Hu YOO, Fei G, Lee L, Fei C, Catrina AI, Jansson L, Andersson AF, Yucel-Lindberg T. Salivary Microbiota and Host-Inflammatory Responses in Periodontitis Affected Individuals With and Without Rheumatoid Arthritis. Front Cell Infect Microbiol 2022; 12:841139. [PMID: 35360114 PMCID: PMC8964114 DOI: 10.3389/fcimb.2022.841139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Periodontitis and rheumatoid arthritis (RA) are two widespread chronic inflammatory diseases with a previously suggested association. The objective of the current study was to compare the oral microbial composition and host´s inflammatory mediator profile of saliva samples obtained from subjects with periodontitis, with and without RA, as well as to predict biomarkers, of bacterial pathogens and/or inflammatory mediators, for classification of samples associated with periodontitis and RA. Methods Salivary samples were obtained from 53 patients with periodontitis and RA and 48 non-RA with chronic periodontitis. The microbial composition was identified using 16S rRNA gene sequencing and compared across periodontitis patients with and without RA. Levels of inflammatory mediators were determined using a multiplex bead assay, compared between the groups and correlated to the microbial profile. The achieved data was analysed using PCoA, DESeq2 and two machine learning algorithms, OPLS-DA and sPLS-DA. Results Differential abundance DESeq2 analyses showed that the four most highly enriched (log2 FC >20) amplicon sequence variants (ASVs) in the non-RA periodontitis group included Alloprevotella sp., Prevotella sp., Haemophilus sp., and Actinomyces sp. whereas Granulicatella sp., Veillonella sp., Megasphaera sp., and Fusobacterium nucleatum were the most highly enriched ASVs (log2 FC >20) in the RA group. OPLS-DA with log2 FC analyses demonstrated that the top ASVs with the highest importance included Vampirovibrio sp. having a positive correlation with non-RA group, and seven ASVs belonging to Sphingomonas insulae, Sphingobium sp., Novosphingobium aromaticivorans, Delftia acidovorans, Aquabacterium spp. and Sphingomonas echinoides with a positive correlation with RA group. Among the detected inflammatory mediators in saliva samples, TWEAK/TNFSF12, IL-35, IFN-α2, pentraxin-3, gp130/sIL6Rb, sIL-6Ra, IL-19 and sTNF-R1 were found to be significantly increased in patients with periodontitis and RA compared to non-RA group with periodontitis. Moreover, correlations between ASVs and inflammatory mediators using sPLS-DA analysis revealed that TWEAK/TNFSF12, pentraxin-3 and IL-19 were positively correlated with the ASVs Sphingobium sp., Acidovorax delafieldii, Novosphingobium sp., and Aquabacterium sp. Conclusion Our results suggest that the combination of microbes and host inflammatory mediators could be more efficient to be used as a predictable biomarker associated with periodontitis and RA, as compared to microbes and inflammatory mediators alone.
Collapse
Affiliation(s)
- Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Luis F. Delgado
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Yue O. O. Hu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Guozhong Fei
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Linkiat Lee
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Carina Fei
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Anca I. Catrina
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Leif Jansson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
- Department of Periodontology, Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Anders F. Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Kaja Eriksson, ; Tülay Yucel-Lindberg,
| |
Collapse
|
30
|
Wirth R, Pap B, Maróti G, Vályi P, Komlósi L, Barta N, Strang O, Minárovits J, Kovács KL. Toward Personalized Oral Diagnosis: Distinct Microbiome Clusters in Periodontitis Biofilms. Front Cell Infect Microbiol 2022; 11:747814. [PMID: 35004342 PMCID: PMC8727345 DOI: 10.3389/fcimb.2021.747814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is caused by pathogenic subgingival microbial biofilm development and dysbiotic interactions between host and hosted microbes. A thorough characterization of the subgingival biofilms by deep amplicon sequencing of 121 individual periodontitis pockets of nine patients and whole metagenomic analysis of the saliva microbial community of the same subjects were carried out. Two biofilm sampling methods yielded similar microbial compositions. Taxonomic mapping of all biofilms revealed three distinct microbial clusters. Two clinical diagnostic parameters, probing pocket depth (PPD) and clinical attachment level (CAL), correlated with the cluster mapping. The dysbiotic microbiomes were less diverse than the apparently healthy ones of the same subjects. The most abundant periodontal pathogens were also present in the saliva, although in different representations. The single abundant species Tannerella forsythia was found in the diseased pockets in about 16–17-fold in excess relative to the clinically healthy sulcus, making it suitable as an indicator of periodontitis biofilms. The discrete microbial communities indicate strong selection by the host immune system and allow the design of targeted antibiotic treatment selective against the main periodontal pathogen(s) in the individual patients.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Gergely Maróti
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Péter Vályi
- Department of Periodontology, University of Szeged, Szeged, Hungary
| | - Laura Komlósi
- Department of Oral Surgery, University of Szeged, Szeged, Hungary
| | - Nikolett Barta
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Shaalan O, Gad HMA, Riad MI. Comparison of Antibacterial Effect of Probiotic Yogurt and Xylitol-Containing Chewing Gum in Geriatric Patients: A Randomized Controlled Clinical Trial. Acta Stomatol Croat 2022; 55:380-389. [PMID: 35001933 PMCID: PMC8734452 DOI: 10.15644/asc55/4/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives To evaluate the effect of probiotic bacteria in yogurt on Streptococcus mutans (MS) count, plaque adherence and salivary pH compared to xylitol-containing chewing gum in geriatric patients. Materials and methods Total number of 96 high caries risk geriatric patients were randomized into two equal groups (n=48). Group 1 (intervention group) received probiotic yogurt (Activia, Danone) once per day, and group 2 (control group) received xylitol chewing gum (Trident original) three times per day. The primary outcome was salivary Streptococcus mutans count and secondary outcomes were interdental plaque Streptococcus mutans count, salivary pH and bacterial adherence. Results For Streptococcus mutans count in saliva and plaque, a statistically significant reduction in the level of MS over all the examined follow up periods of the study in probiotic yogurt group as well as xylitol gum group was found. An intergroup comparison for salivary MS count showed statistically significant difference between the two materials in a two week and a three month period of time and there was no statistically significant difference between both materials at one month time period. Salivary pH results showed statistically significant increase in pH in both groups along the follow-up periods. Bacterial adherence results showed statistically significant reduction in both groups. Conclusions Probiotic yogurt is an effective antibacterial agent against salivary and plaque bacteria in geriatric patients.
Collapse
Affiliation(s)
- Omar Shaalan
- Conservative Department, Faculty of Dentistry, Cairo University
| | | | | |
Collapse
|
32
|
Ruan W, Sun C, Gao Q, Shrivastava N. Metaproteomics associated with severe early childhood caries highlights the differences in salivary proteins. Arch Oral Biol 2021; 131:105220. [PMID: 34461447 DOI: 10.1016/j.archoralbio.2021.105220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the salivary metaproteomic characteristics of the children with and without severe early childhood caries (S-ECC). DESIGN In this study, we collected unstimulated saliva samples from 34 children (age 3-4 years) with caries free (NC, dmfs (= index of decayed, missing due to caries, or filled tooth surfaces) = 0, n = 23) and with S-ECC (dmfs≥10, n = 11). Salivary proteins were extracted and reduced, and then a Liquid Chromatography/Mass Spectrometry system was used to identify proteins. RESULTS Nearly 3000 proteins were identified in this study, and about 3.5 % of the proteins originated from human while 86 % were derived from microbes. The salivary protein types in the NC group were statistically greater than those in the S-ECC group (P <0.05). Specifically, the salivary protein types derived from microbes in the NC group were significantly greater than those in the S-ECC group. Three proteins, human lactoferrin, penicillin-binding protein 1C [Burkholderia ubonensis], human alpha-defensin 1 (F28a mutant), were decreased statistically in the NC group compared to the S-ECC group (P < 0.05). Only one protein, 50S ribosomal protein L17 secreted by Haemophilus haemolyticus, was significantly increased in the NC group compared to the S-ECC group. Salivary IgA was the top highest protein in the NC group whereas human lysozyme was the top highest protein in the S-ECC group. CONCLUSIONS The differential proteins recognized in this study may be conducive for finding a caries biomarker. Understanding the metaproteomic characteristics can help us to control the caries from human origin and microbial origin.
Collapse
Affiliation(s)
- Wenhua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinic Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Zhejiang Province, Hangzhou, 310052, PR China.
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, No. 866 Yuhangtang Road, Xihu District, Zhejiang Province, PR China
| | - Qikang Gao
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, No. 866 Yuhangtang Road, Xihu District, Zhejiang Province, PR China.
| | - Neeraj Shrivastava
- Formerly visiting scientist at Zhejiang University, Hangzhou, Zhejiang Province, PR China; Amity Institute of Microbial Technology (AIMT), Amity University Uttar Pradesh (AUUP), Sector 125, Super Express Way, Noida, 201 303, UP, India
| |
Collapse
|
33
|
Lin P, Niimi H, Ohsugi Y, Tsuchiya Y, Shimohira T, Komatsu K, Liu A, Shiba T, Aoki A, Iwata T, Katagiri S. Application of Ligature-Induced Periodontitis in Mice to Explore the Molecular Mechanism of Periodontal Disease. Int J Mol Sci 2021; 22:ijms22168900. [PMID: 34445604 PMCID: PMC8396362 DOI: 10.3390/ijms22168900] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.
Collapse
Affiliation(s)
- Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
- Correspondence: (H.N.); (Y.O.); Tel.: +81-3-5803-5488 (H.N. & Y.O.)
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Anhao Liu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.L.); (Y.T.); (T.S.); (A.L.); (T.S.); (A.A.); (T.I.); (S.K.)
| |
Collapse
|