1
|
Zhong Y, Guo J, Zhang Z, Zheng Y, Yang M, Su Y. Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against Edwardsiella tarda. Virulence 2024; 15:2367647. [PMID: 38884466 PMCID: PMC11185186 DOI: 10.1080/21505594.2024.2367647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Ziyi Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Manjun Yang
- Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, Lasa, Xizang, People’s Republic of China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Reddy Kethireddy S, Contractor R, Islam H, Moulder T, Kalifa AR, Marin Meneses E, Barbosa Mendoza M, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. Microbiol Spectr 2024:e0189524. [PMID: 39436125 DOI: 10.1128/spectrum.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. Previous work found that the relationship between [ATP] and growth rate can account for the strength and occurrence of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. Using a combination of flux balance analysis and experimentation, we show that nucleotide synthesis can determine the relationship between [ATP] and growth and thus the strength of inoculum effect in an antibiotic class-dependent manner. If the [ATP]/growth rate is sufficiently high as determined by exogenously supplied nitrogenous bases, the inoculum effect does not occur. This is consistent for both Escherichia coli and Pseudomonas aeruginosa. Interestingly, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect, which may pave the way for intervention strategies to reduce the inoculum effect in the clinic. IMPORTANCE If a bacterial population can grow and reach a sufficiently high density, routine doses of antibiotics can be ineffective. This phenomenon, called the inoculum effect, has been observed for nearly all antibiotics and bacterial species. It has also been reported to result in antibiotic failure in the clinic. Understanding how to reduce the inoculum effect can make high-density infections easier to treat. Here, we show that purine and pyrimidine synthesis affect the strength of the inoculum effect; as the transcriptional activity of pyrimidine synthesis increases, the strength of the inoculum effect for aminoglycosides decreases. Conversely, as the transcriptional activity of purine synthesis increases, the strength of the inoculum effect for β-lactam antibiotics decreases. Our work highlights the importance of nucleotide synthesis in determining the strength of the inoculum effect, which may lead to the identification of new ways to treat high-density infections in the clinic.
Collapse
Affiliation(s)
- Daniella M Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Marla C Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ariane R Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert P Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
3
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Inosine reverses multidrug resistance in Gram-negative bacteria carrying mobilized RND-type efflux pump gene cluster tmexCD-toprJ. mSystems 2024; 9:e0079724. [PMID: 39254032 PMCID: PMC11495011 DOI: 10.1128/msystems.00797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is rapidly increasing worldwide, highlighting the urgent need for pharmaceutical and nonpharmaceutical interventions to tackle different-to-treat bacterial infections. Tigecycline, a semi-synthesis glycylcycline for parenteral administration, is widely recognized as one of the few effective therapies available against pan-drug resistant Gram-negative pathogens. Regrettably, the efficacy of multiple drugs, including tigecycline, is currently being undermined due to the emergence of a recently discovered mobilized resistance-nodulation-division-type efflux pump gene cluster tmexCD1-toprJ1. Herein, by employing untargeted metabolomic approaches, we reveal that the expression of tmexCD1-toprJ1 disrupts bacterial purine metabolism, with inosine being identified as a crucial biomarker. Notably, the supplementation of inosine effectively reverses tigecycline resistance in tmexCD1-toprJ1-positive bacteria. Mechanistically, exogenous inosine enhanced bacterial proton motive force, which promotes the uptake of tigecycline. Furthermore, inosine enhances succinate biosynthesis by stimulating the tricarboxylic acid cycle. Succinate interacts with the two-component system EnvZ/OmpR and upregulates OmpK 36, thereby promoting the influx of tigecycline. These actions collectively lead to the increased intracellular accumulation of tigecycline. Overall, our study offers a distinct combinational strategy to manage infections caused by tmexCD-toprJ-positive bacteria. IMPORTANCE TMexCD1-TOprJ1, a mobilized resistance-nodulation-division-type efflux pump, confers phenotypic resistance to multiple classes of antibiotics. Nowadays, tmexCD-toprJ has disseminated among diverse species of clinical pathogens, exacerbating the need for novel anti-infective strategies. In this study, we report that tmexCD1-toprJ1-negative and -positive bacteria exhibit significantly different metabolic flux and characteristics, especially in purine metabolism. Intriguingly, the addition of inosine, a purine metabolite, effectively restores the antibacterial activity of tigecycline by promoting antibiotic uptake. Our findings highlight the correlation between bacterial mechanism and antibiotic resistance, and offer a distinct approach to overcome tmexCD-toprJ-mediated multidrug resistance.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Zhang M, Song H, Yang S, Zhang Y, Tian Y, Wang Y, Liu D. Deciphering the Antibacterial Mechanisms of 5-Fluorouracil in Escherichia coli through Biochemical and Transcriptomic Analyses. Antibiotics (Basel) 2024; 13:528. [PMID: 38927194 PMCID: PMC11200800 DOI: 10.3390/antibiotics13060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens presents a clinical challenge in infection treatment, prompting the repurposing of existing drugs as an essential strategy to address this crisis. Although the anticancer drug 5-fluorouracil (5-FU) has been recognized for its antibacterial properties, its mechanisms are not fully understood. Here, we found that the minimal inhibitory concentration (MIC) of 5-FU against Escherichia coli was 32-64 µg/mL, including strains carrying blaNDM-5, which confers resistance to carbapenems. We further elucidated the antibacterial mechanism of 5-FU against E. coli by using genetic and biochemical analyses. We revealed that the mutation of uracil phosphoribosyltransferase-encoding gene upp increased the MIC of 5-FU against E. coli by 32-fold, indicating the role of the upp gene in 5-FU resistance. Additionally, transcriptomic analysis of E. coli treated with 5-FU at 8 µg/mL and 32 µg/mL identified 602 and 1082 differentially expressed genes involved in carbon and nucleic acid metabolism, DNA replication, and repair pathways. The biochemical assays showed that 5-FU induced bacterial DNA damage, significantly increased intracellular ATP levels and the NAD+/NADH ratio, and promoted reactive oxygen species (ROS) production. These findings suggested that 5-FU may exert antibacterial effects on E. coli through multiple pathways, laying the groundwork for its further development as a therapeutic candidate against carbapenem-resistant bacterial infections.
Collapse
Affiliation(s)
- Muchen Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huangwei Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (S.Y.); (Y.Z.); (Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Hernandez DM, Marzouk M, Cole M, Fortoul MC, Kethireddy SR, Contractor R, Islam H, Moulder T, Kalifa AR, Meneses EM, Mendoza MB, Thomas R, Masud S, Pubien S, Milanes P, Diaz-Tang G, Lopatkin AJ, Smith RP. Purine and pyrimidine synthesis differently affect the strength of the inoculum effect for aminoglycoside and β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588696. [PMID: 38645041 PMCID: PMC11030397 DOI: 10.1101/2024.04.09.588696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The inoculum effect has been observed for nearly all antibiotics and bacterial species. However, explanations accounting for its occurrence and strength are lacking. We previously found that growth productivity, which captures the relationship between [ATP] and growth, can account for the strength of the inoculum effect for bactericidal antibiotics. However, the molecular pathway(s) underlying this relationship, and therefore determining the inoculum effect, remain undiscovered. We show that nucleotide synthesis can determine the relationship between [ATP] and growth, and thus the strength of inoculum effect in an antibiotic class-dependent manner. Specifically, and separate from activity through the tricarboxylic acid cycle, we find that transcriptional activity of genes involved in purine and pyrimidine synthesis can predict the strength of the inoculum effect for β-lactam and aminoglycosides antibiotics, respectively. Our work highlights the antibiotic class-specific effect of purine and pyrimidine synthesis on the severity of the inoculum effect and paves the way for intervention strategies to reduce the inoculum effect in the clinic.
Collapse
Affiliation(s)
- Daniella M. Hernandez
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Melissa Marzouk
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Madeline Cole
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Marla C. Fortoul
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saipranavi Reddy Kethireddy
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Rehan Contractor
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Habibul Islam
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
| | - Trent Moulder
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ariane R. Kalifa
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Estefania Marin Meneses
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Maximiliano Barbosa Mendoza
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Ruth Thomas
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Saad Masud
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Sheena Pubien
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Patricia Milanes
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Gabriela Diaz-Tang
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Biological Sciences, Halmos College of Arts and Science, Nova Southeastern University, Fort Lauderdale, FL, 33314
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester; Rochester, NY 14627; USA
- Department of Microbiology and Immunology, University of Rochester Medical Center; Rochester, NY 14627; USA
- Department of Biomedical Engineering, University of Rochester Medical Center; Rochester, NY 14627; USA
| | - Robert P. Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314
| |
Collapse
|
6
|
Chen XW, Wu JH, Liu YL, Munang’andu HM, Peng B. Fructose promotes ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence 2023; 14:2180938. [PMID: 36803528 PMCID: PMC9980678 DOI: 10.1080/21505594.2023.2180938] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.
Collapse
Affiliation(s)
- Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,CONTACT Bo Peng
| |
Collapse
|
7
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
9
|
Zhu C, Zhou Y, Kang J, Yang H, Lin J, Fang B. Alkaline arginine promotes the gentamicin-mediated killing of drug-resistant Salmonella by increasing NADH concentration and proton motive force. Front Microbiol 2023; 14:1237825. [PMID: 37795291 PMCID: PMC10546041 DOI: 10.3389/fmicb.2023.1237825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Antimicrobial resistance, especially the development of multidrug-resistant strains, is an urgent public health threat. Antibiotic adjuvants have been shown to improve the treatment of resistant bacterial infections. Methods We verified that exogenous L-arginine promoted the killing effect of gentamicin against Salmonella in vitro and in vivo, and measured intracellular ATP, NADH, and PMF of bacteria. Gene expression was determined using real-time quantitative PCR. Results This study found that alkaline arginine significantly increased gentamicin, tobramycin, kanamycin, and apramycin-mediated killing of drug-resistant Salmonella, including multidrug-resistant strains. Mechanistic studies showed that exogenous arginine was shown to increase the proton motive force, increasing the uptake of gentamicin and ultimately inducing bacterial cell death. Furthermore, in mouse infection model, arginine effectively improved gentamicin activity against Salmonella typhimurium. Discussion These findings confirm that arginine is a highly effective and harmless aminoglycoside adjuvant and provide important evidence for its use in combination with antimicrobial agents to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Kang
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jinglin Lin
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Wang Y, Su J, Zhou Z, Yang J, Liu W, Zhang Y, Zhang P, Guo T, Li G. Baicalein Resensitizes Multidrug-Resistant Gram-Negative Pathogens to Doxycycline. Microbiol Spectr 2023; 11:e0470222. [PMID: 37070985 PMCID: PMC10269726 DOI: 10.1128/spectrum.04702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Junfeng Su
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ziyan Zhou
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Jie Yang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjuan Liu
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yafen Zhang
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
11
|
Yang H, Zhou Y, Luo Q, Zhu C, Fang B. L-leucine increases the sensitivity of drug-resistant Salmonella to sarafloxacin by stimulating central carbon metabolism and increasing intracellular reactive oxygen species level. Front Microbiol 2023; 14:1186841. [PMID: 37250042 PMCID: PMC10213264 DOI: 10.3389/fmicb.2023.1186841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The overuse of antibiotics has made public health and safety face a serious cisis. It is urgent to develop new clinical treatment methods to combat drug resistant bacteria to alleviate the health crisis. The efficiency of antibiotics is closely related to the metabolic state of bacteria. However, studies on fluoroquinolone resistant Salmonella are relatively rare. Methods CICC21484 were passaged in medium with and without sarafloxacin and obtain sarafloxacin- susceptible Salmonella Typhimurium (SAR-S) and sarafloxacin resistant Salmonella Typhimurium (SAR-R), respectively. Non-targeted metabolomics was used to analyze the metabolic difference between SAR-S and SAR-R. Then we verified that exogenous L-leucine promoted the killing effect of sarafloxacin in vitro, and measured the intracellular ATP, NADH and reactive oxygen species levels of bacteria. Gene expression was determined using Real Time quantitative PCR. Results We confirmed that exogenous L-leucine increased the killing effect of sarafloxacin on SAR-R and other clinically resistant Salmonella serotypes. Exogenous L-leucine stimulated the metabolic state of bacteria, especially the TCA cycle, which increased the working efficiency of the electron transfer chain and increased the intracellular NADH, ATP concentration, and reactive oxygen species level. Our results suggest that when the metabolism of drug-resistant bacteria is reprogrammed, the bactericidal effect of antibiotics improves. Discussion This study further enhances research in the anti-drug resistance field at the metabolic level and provides theoretical support for solving the current problem of sarafloxacin drug resistance, a unique fluoroquinolone drug for animals and indicating the potential of L-leucine as a new antibiotic adjuvant.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Qiong Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Vizioli C, Jaime-Lara R, Daniel SG, Franks A, Diallo AF, Bittinger K, Tan TP, Merenstein DJ, Brooks B, Joseph PV, Maki KA. Administration of Bifidobacterium animalis subsp. lactis strain BB-12 ® in healthy children: characterization, functional composition, and metabolism of the gut microbiome. Front Microbiol 2023; 14:1165771. [PMID: 37333640 PMCID: PMC10275293 DOI: 10.3389/fmicb.2023.1165771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two (Streptococcus thermophilus and Lactobacillus delbrueckii; S2) vs. three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Methods Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Results Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices, except for a lower microbial diversity in the S2 + BB12 group at Day 30. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10. In the S2 + BB12 group, the abundance of several fecal metabolites increased at Day 10, including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Discussion In conclusion, there were were no significant differences in the global metagenomic or metabolomic profiles between healthy children receiving two (S2) vs. three (S2 + BB12) probiotic strains for 10 days. Nevertheless, we observed a significant increase (Day 0 to Day 10) in the relative abundance of the two and three probiotics administered in the S2 and S2 + BB12 groups, respectively, indicating the intervention had a measurable impact on the bacteria of interest in the gut microbiome. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.
Collapse
Affiliation(s)
- Carlotta Vizioli
- Department of Health and Human Services, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Rosario Jaime-Lara
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alexis Franks
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Ana F. Diallo
- Family and Community Health Nursing, School of Nursing, Institute of Inclusion, Inquiry and Innovation (iCubed), Virginia Commonwealth University, Richmond, VA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Daniel J. Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brianna Brooks
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Paule V. Joseph
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| |
Collapse
|
13
|
Vizioli C, Jaime-Lara R, Daniel SG, Franks A, Diallo AF, Bittinger K, Tan TP, Merenstein DJ, Brooks B, Joseph PV, Maki KA. Administration of Bifidobacterium animalis subsp. lactis Strain BB-12 ® in Healthy Children: Characterization, Functional Composition, and Metabolism of the Gut Microbiome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.02.23285145. [PMID: 36798243 PMCID: PMC9934720 DOI: 10.1101/2023.02.02.23285145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two ( Streptococcus thermophilus and Lactobacillus delbrueckii ; S2) vs . three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10 . In the S2+BB12 group, the abundance of several fecal metabolites was reduced at Day 10 , including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.
Collapse
Affiliation(s)
- Carlotta Vizioli
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Rosario Jaime-Lara
- National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexis Franks
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Ana F. Diallo
- Institute of Inclusion, Inquiry & Innovation (iCubed), Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, VA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC
| | - Daniel J. Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC
| | - Brianna Brooks
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Paule V. Joseph
- National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, 20814
| |
Collapse
|
14
|
Fan L, Pan Z, Liao X, Zhong Y, Guo J, Pang R, Chen X, Ye G, Su Y. Uracil restores susceptibility of methicillin-resistant Staphylococcus aureus to aminoglycosides through metabolic reprogramming. Front Pharmacol 2023; 14:1133685. [PMID: 36762116 PMCID: PMC9902350 DOI: 10.3389/fphar.2023.1133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) has now become a major nosocomial pathogen bacteria and resistant to many antibiotics. Therefore, Development of novel approaches to combat the disease is especially important. The present study aimed to provide a novel approach involving the use of nucleotide-mediated metabolic reprogramming to tackle intractable methicillin-resistant S. aureus (MRSA) infections. Objective: This study aims to explore the bacterial effects and mechanism of uracil and gentamicin in S. aureus. Methods: Antibiotic bactericidal assays was used to determine the synergistic bactericidal effect of uracil and gentamicin. How did uracil regulate bacterial metabolism including the tricarboxylic acid (TCA) cycle by GC-MS-based metabolomics. Next, genes and activity of key enzymes in the TCA cycle, PMF, and intracellular aminoglycosides were measured. Finally, bacterial respiration, reactive oxygen species (ROS), and ATP levels were also assayed in this study. Results: In the present study, we found that uracil could synergize with aminoglycosides to kill MRSA (USA300) by 400-fold. Reprogramming metabolomics displayed uracil reprogrammed bacterial metabolism, especially enhanced the TCA cycle to elevate NADH production and proton motive force, thereby promoting the uptake of antibiotics. Furthermore, uracil increased cellular respiration and ATP production, resulting the generation of ROS. Thus, the combined activity of uracil and antibiotics induced bacterial death. Inhibition of the TCA cycle or ROS production could attenuate bactericidal efficiency. Moreover, uracil exhibited bactericidal activity in cooperation with aminoglycosides against other pathogenic bacteria. In a mouse mode of MRSA infection, the combination of gentamicin and uracil increased the survival rate of infected mice. Conclusion: Our results suggest that uracil enhances the activity of bactericidal antibiotics to kill Gram-positive bacteria by modulating bacterial metabolism.
Collapse
Affiliation(s)
- Lvyuan Fan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyu Pan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Liao
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yilin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Guo
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinhai Chen
- Institute of Infectious Diseases Shenzhen Bay Laboratory, Shenzhen, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| | - Yubin Su
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| |
Collapse
|
15
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
16
|
Yong Y, Zhou Y, Liu K, Liu G, Wu L, Fang B. Exogenous Citrulline and Glutamine Contribute to Reverse the Resistance of Salmonella to Apramycin. Front Microbiol 2021; 12:759170. [PMID: 34721368 PMCID: PMC8552007 DOI: 10.3389/fmicb.2021.759170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance is an increasing concern for human and animal health worldwide. Recently, the concept of reverting bacterial resistance by changing the metabolic state of antibiotic-resistant bacteria has emerged. In this study, we investigated the reversal of Apramycin resistance in Salmonella. First, non-targeted metabonomics were used to identify key differential metabolites of drug-resistant bacteria. Then, the reversal effect of exogenous substances was verified in vivo and in vitro. Finally, the underlying mechanism was studied. The results showed that the metabolites citrulline and glutamine were significantly reduced in Apramycin-resistant Salmonella. When citrulline and glutamine were added to the culture medium of drug-resistant Salmonella, the killing effect of Apramycin was restored markedly. Mechanistic studies showed that citrulline and glutamine promoted the Tricarboxylic acid cycle, produced more NADH in the bacteria, and increased the proton-motive force, thus promoting Apramycin entry into the bacterial cells, and killing the drug-resistant bacteria. This study provides a useful method to manage infections by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yan Yong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yanhong Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Kexin Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Guochang Liu
- Guangdong Wens Dahuanong Biotechnology Limited Company, YunFu, China
| | - Liqin Wu
- Center for Agricultural Product Quality and Safety of Guangdong Province, Guangzhou, China
| | - Binghu Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Magnesium Hydroxide Nanoparticles Kill Exponentially Growing and Persister Escherichia coli Cells by Causing Physical Damage. NANOMATERIALS 2021; 11:nano11061584. [PMID: 34208716 PMCID: PMC8234494 DOI: 10.3390/nano11061584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022]
Abstract
Magnesium hydroxide nanoparticles are widely used in medicinal and hygiene products because of their low toxicity, environment-friendliness, and low cost. Here, we studied the effects of three different sizes of magnesium hydroxide nanoparticles on antibacterial activity: NM80, NM300, and NM700. NM80 (D50 = 75.2 nm) showed a higher bactericidal effect against Escherichia coli than larger nanoparticles (D50 = 328 nm (NM300) or 726 nm (NM700)). Moreover, NM80 showed a high bactericidal effect against not only exponential cells but also persister cells, which are difficult to eliminate owing to their high tolerance to antibiotics. NM80 eliminated strains in which magnesium-transport genes were knocked out and exhibited a bactericidal effect similar to that observed in the wild-type strain. The bactericidal action involved physical cell damage, as confirmed using scanning electron microscopy, which showed that E. coli cells treated with NM80 were directly injured.
Collapse
|
18
|
Abstract
Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses and why these are relevant to human infections. We highlight opportunities for how studies into nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biology, Barnard College, New York, NY, United States.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States.,Data Science Institute, Columbia University, New York, NY, United States
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|