1
|
Chen G, Shi G, Dai Y, Zhao R, Wu Q. Graph-Based Pan-Genome Reveals the Pattern of Deleterious Mutations during the Domestication of Saccharomyces cerevisiae. J Fungi (Basel) 2024; 10:575. [PMID: 39194902 DOI: 10.3390/jof10080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The "cost of domestication" hypothesis suggests that the domestication of wild species increases the number, frequency, and/or proportion of deleterious genetic variants, potentially reducing their fitness in the wild. While extensively studied in domesticated species, this phenomenon remains understudied in fungi. Here, we used Saccharomyces cerevisiae, the world's oldest domesticated fungus, as a model to investigate the genomic characteristics of deleterious variants arising from fungal domestication. Employing a graph-based pan-genome approach, we identified 1,297,761 single nucleotide polymorphisms (SNPs), 278,147 insertion/deletion events (indels; <30 bp), and 19,967 non-redundant structural variants (SVs; ≥30 bp) across 687 S. cerevisiae isolates. Comparing these variants with synonymous SNPs (sSNPs) as neutral controls, we found that the majority of the derived nonsynonymous SNPs (nSNPs), indels, and SVs were deleterious. Heterozygosity was positively correlated with the impact of deleterious SNPs, suggesting a role of genetic diversity in mitigating their effects. The domesticated isolates exhibited a higher additive burden of deleterious SNPs (dSNPs) than the wild isolates, but a lower burden of indels and SVs. Moreover, the domesticated S. cerevisiae showed reduced rates of adaptive evolution relative to the wild S. cerevisiae. In summary, deleterious variants tend to be heterozygous, which may mitigate their harmful effects, but they also constrain breeding potential. Addressing deleterious alleles and minimizing the genetic load are crucial considerations for future S. cerevisiae breeding efforts.
Collapse
Affiliation(s)
- Guotao Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruilin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Wang M, Li X, Liu X, Hou X, He Y, Yu JH, Hu S, Yin H, Xie BB. Annotation of 2,507 Saccharomyces cerevisiae genomes. Microbiol Spectr 2024; 12:e0358223. [PMID: 38488392 PMCID: PMC10986567 DOI: 10.1128/spectrum.03582-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Saccharomyces cerevisiae (baker's yeast, budding yeast) is one of the most important model organisms for biological research and is a crucial microorganism in industry. Currently, a huge number of Saccharomyces cerevisiae genome sequences are available at the public domain. However, these genomes are distributed at different websites and a large number of them are released without annotation information. To provide one complete annotated genome data resource, we collected 2,507 Saccharomyces cerevisiae genome assemblies and re-annotated 2,506 assemblies using a custom annotation pipeline, producing a total of 15,407,164 protein-coding gene models. With a custom pipeline, all these gene sequences were clustered into families. A total of 1,506 single-copy genes were selected as marker genes, which were then used to evaluate the genome completeness and base qualities of all assemblies. Pangenomic analyses were performed based on a selected subset of 847 medium-high-quality genomes. Statistical comparisons revealed a number of gene families showing copy number variations among different organism sources. To the authors' knowledge, this study represents the largest genome annotation project of S. cerevisiae so far, providing rich genomic resources for the future studies of the model organism S. cerevisiae and its relatives.IMPORTANCESaccharomyces cerevisiae (baker's yeast, budding yeast) is one of the most important model organisms for biological research and is a crucial microorganism in industry. Though a huge number of Saccharomyces cerevisiae genome sequences are available at the public domain, these genomes are distributed at different websites and most are released without annotation, hindering the efficient reuse of these genome resources. Here, we collected 2,507 genomes for Saccharomyces cerevisiae, performed genome annotation, and evaluated the genome qualities. All the obtained data have been deposited at public repositories and are freely accessible to the community. This study represents the largest genome annotation project of S. cerevisiae so far, providing one complete annotated genome data set for S. cerevisiae, an important workhorse for fundamental biology, biotechnology, and industry.
Collapse
Affiliation(s)
- Meng Wang
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuan Li
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xian Liu
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Jun-Hong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Bin-Bin Xie
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Pontes A, Paraíso F, Liu YC, Limtong S, Jindamorakot S, Jespersen L, Gonçalves C, Rosa CA, Tsai IJ, Rokas A, Hittinger CT, Gonçalves P, Sampaio JP. Tracking alternative versions of the galactose gene network in the genus Saccharomyces and their expansion after domestication. iScience 2024; 27:108987. [PMID: 38333711 PMCID: PMC10850751 DOI: 10.1016/j.isci.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
When Saccharomyces cerevisiae grows on mixtures of glucose and galactose, galactose utilization is repressed by glucose, and induction of the GAL gene network only occurs when glucose is exhausted. Contrary to reference GAL alleles, alternative alleles support faster growth on galactose, thus enabling distinct galactose utilization strategies maintained by balancing selection. Here, we report on new wild populations of Saccharomyces cerevisiae harboring alternative GAL versions and, for the first time, of Saccharomyces paradoxus alternative alleles. We also show that the non-functional GAL version found earlier in Saccharomyces kudriavzevii is phylogenetically related to the alternative versions, which constitutes a case of trans-specific maintenance of highly divergent alleles. Strains harboring the different GAL network variants show different levels of alleviation of glucose repression and growth proficiency on galactose. We propose that domestication involved specialization toward thriving in milk from a generalist ancestor partially adapted to galactose consumption in the plant niche.
Collapse
Affiliation(s)
- Ana Pontes
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Francisca Paraíso
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Savitree Limtong
- Department of Microbiology Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University, Bangkok 10900, Thailand
| | - Sasitorn Jindamorakot
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Carla Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| |
Collapse
|
4
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Raimondeau P, Bianconi ME, Pereira L, Parisod C, Christin PA, Dunning LT. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage. THE NEW PHYTOLOGIST 2023; 240:2072-2084. [PMID: 37793435 DOI: 10.1111/nph.19272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS/IRD/Université Toulouse 3, Toulouse, 31062, France
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
6
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Díaz-Muñoz C, Verce M, De Vuyst L, Weckx S. Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience 2022; 25:105309. [PMID: 36304120 PMCID: PMC9593892 DOI: 10.1016/j.isci.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Various yeast strains have been proposed as candidate starter cultures for cocoa fermentation, especially strains of Saccharomyces cerevisiae. In the current study, the genome of the cocoa strain S. cerevisiae IMDO 050523 was unraveled based on a combination of long- and short-read sequencing. It consisted of 16 nuclear chromosomes and a mitochondrial chromosome, which were organized in 20 contigs, with only two small gaps. A phylogenomic analysis of this genome together with another 105 S cerevisiae genomes, among which 20 from cocoa strains showed a geographical distribution of the latter, including S. cerevisiae IMDO 050523. Its genome clustered together with that of a West African fermented food population, indicating a wider adaptation to West African food niches than cocoa. Furthermore, S. cerevisiae IMDO 050523 contained genetic signatures involved in sucrose hydrolysis, pectin degradation, osmotolerance, and conserved amino acid changes in key ester-producing enzymes that could point toward specific niche adaptations.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
9
|
The teenage years of yeast population genomics trace history, admixing and getting wilder. Curr Opin Genet Dev 2022; 75:101942. [PMID: 35753210 DOI: 10.1016/j.gde.2022.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Population genomics studies the evolutionary processes that shape intraspecies genetic variations. In this review, I explore the insights into yeast-population genomics that have emerged from recent advances in sequencing. Genomes of the model Saccharomyces cerevisiae and many new yeast species from around the world are being used to address various aspects of population biology, including geographical origin, the level of introgression, domestication signatures, and outcrossing frequency. New long-read sequencing has enabled a greater capacity to quantify these variations at a finer resolution from complete de novo genomes at the population scale to phasing subgenomes of different origins. These resources provide a platform to dissect the relationship between phenotypes across environmental niches.
Collapse
|
10
|
Mozzachiodi S, Bai FY, Baldrian P, Bell G, Boundy-Mills K, Buzzini P, Čadež N, Riffo FC, Dashko S, Dimitrov R, Fisher KJ, Gibson BR, Gouliamova D, Greig D, Heistinger L, Hittinger CT, Jecmenica M, Koufopanou V, Landry CR, Mašínová T, Naumova ES, Opulente D, Peña JJ, Petrovič U, Tsai IJ, Turchetti B, Villarreal P, Yurkov A, Liti G, Boynton P. Yeasts from temperate forests. Yeast 2022; 39:4-24. [PMID: 35146791 DOI: 10.1002/yea.3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats, and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.
Collapse
Affiliation(s)
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Graham Bell
- Biology Department and Redpath Museum, McGill University, Québec, Canada
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Neža Čadež
- Biotechnical Faculty, Food Science and Technology Department, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco Cubillos Riffo
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sofia Dashko
- DSM Food Specialties, Center for Food Innovation, AX, Delft, The Netherlands
| | - Roumen Dimitrov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kaitlin J Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian R Gibson
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Chair of Brewing and Beverage Technology, Berlin, Germany
| | - Dilnora Gouliamova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Duncan Greig
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Lina Heistinger
- ETH Zurich, Department of Biology, Institute of Biochemistry, Switzerland
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Canada.,PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Canada.,Centre de Recherche sur les Données Massives, Université Laval, Canada.,Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Canada
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Dana Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Uroš Petrovič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia
| | | | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Pablo Villarreal
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | |
Collapse
|
11
|
Bai FY, Han DY, Duan SF, Wang QM. The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes (Basel) 2022; 13:230. [PMID: 35205274 PMCID: PMC8871604 DOI: 10.3390/genes13020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
The baker's yeast Saccharomyces cerevisiae has become a powerful model in ecology and evolutionary biology. A global effort on field survey and population genetics and genomics of S. cerevisiae in past decades has shown that the yeast distributes ubiquitously in nature with clearly structured populations. The global genetic diversity of S. cerevisiae is mainly contributed by strains from Far East Asia, and the ancient basal lineages of the species have been found only in China, supporting an 'out-of-China' origin hypothesis. The wild and domesticated populations are clearly separated in phylogeny and exhibit hallmark differences in sexuality, heterozygosity, gene copy number variation (CNV), horizontal gene transfer (HGT) and introgression events, and maltose utilization ability. The domesticated strains from different niches generally form distinct lineages and harbor lineage-specific CNVs, HGTs and introgressions, which contribute to their adaptations to specific fermentation environments. However, whether the domesticated lineages originated from a single, or multiple domestication events is still hotly debated and the mechanism causing the diversification of the wild lineages remains to be illuminated. Further worldwide investigations on both wild and domesticated S. cerevisiae, especially in Africa and West Asia, will be helpful for a better understanding of the natural and domestication histories and evolution of S. cerevisiae.
Collapse
Affiliation(s)
- Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| |
Collapse
|
12
|
A multi-modal algorithm based on an NSGA-II scheme for phylogenetic tree inference. Biosystems 2022; 213:104606. [DOI: 10.1016/j.biosystems.2022.104606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
|
13
|
He PY, Shao XQ, Duan SF, Han DY, Li K, Shi JY, Zhang RP, Han PJ, Wang QM, Bai FY. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China. Yeast 2021; 39:69-82. [PMID: 34961959 DOI: 10.1002/yea.3688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
The wild yeast Saccharomyces paradoxus has become a new model in ecology and evolutionary biology. Different lineages of S. paradoxus have been recognized across the world, but the distribution and genetic diversity of the species remain unknown in China, where the origin of its sibling species S. cerevisiae lies. In this study, we investigated the ecological and geographic distribution of S. paradoxus through an extensive field survey in China and performed population genomic analysis on a set of S. paradoxus strains, including 27 strains, representing different geographic and ecological origins within China, and 59 strains representing all the known lineages of the species recognized in the other regions of the world so far. We found two distinct lineages of S. paradoxus in China. The majority of the Chinese strains studied belong to the Far East lineage, and six strains belong to a novel highly diverged lineage. The distribution of these two lineages overlaps ecologically and geographically in temperate to subtropical climate zones in China. With the addition of the new China lineage, the Eurasian population of S. paradoxus exhibits higher genetic diversity than the American population. We observed more possible lineage-specific introgression events from the Eurasian lineages than from the American lineages. Our results expand the knowledge on ecology, genetic diversity, biogeography, and evolution of S. paradoxus.
Collapse
Affiliation(s)
- Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Qian Shao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Genetic Engineering Division, China National Intellectual Property Administration (CNIPA), Beijing, China
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|