1
|
Guido A, Calcagnile M, Talà A, Tredici SM, Belmonte G, Alifano P. Microbial consortium involved in ferromanganese and francolite biomineralization in an anchialine environment (Zinzulùsa Cave, Castro, Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173423. [PMID: 38797412 DOI: 10.1016/j.scitotenv.2024.173423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Tidally-influenced subterranean settings represent natural geomicrobiological laboratories, relatively unexplored, that facilitate the investigation of new biomineralization processes. The unusual water chemistry of Zinzulùsa Cave and its oligotrophic and aphotic conditions have allowed the development of a unique ecosystem in which complex bacterial activities induce rare biomineralization processes. A diversified microbial community develops on centimeter-thick crusts that form in the submerged part of the cave. The crusts are formed of Ca-phosphate minerals, mostly carbonate-fluoroapatite (francolite), covered by a black crust, few microns in thickness, composed of ferromanganiferous oxides (hematite and vernadite). Diffuse coccoidal and filamentous bacteria and amorphous organic matter are mixed with the minerals. The micromorphologies and comparative 16S rRNA gene-based metabarcoding analyses identify a "core microbiota" also common to other natural environments characterized by FeMn and Ca-phosphate mineralization. The microbiota is characterized by nitrifying, sulfide/sulfur/thiosulfate-oxidizing and sulfate/thiosulfate/sulfur-reducing bacteria. In addition, manganese-oxidizing bacteria include the recently described "Ca. Manganitrophus noduliformans" and an abundance of bacteria belonging to the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum, as well as Haliangiales (fruiting body-forming bacteria) and Hyphomicrobiales (stalked and budding bacteria) that are known to produce extracellular polymers that trap iron and manganese oxides. 16S rRNA gene metabarcoding analysis showed the presence of bacteria able to utilize many organic P substrates, including Ramlibacter, and SEM images revealed traces of fossilized microorganisms resembling "cable bacteria", which may play a role in Ca-phosphate biomineralization. Overall, the data indicate biomineralization processes induced by microbial metabolic activities for both ferromanganiferous oxide and francolite components of these crusts.
Collapse
Affiliation(s)
- Adriano Guido
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Cosenza, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | | | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Avendaño KA, Ponce-Jahen SJ, Valenzuela EI, Pajares S, Samperio-Ramos G, Camacho-Ibar VF, Cervantes FJ. Nitrogen loss in coastal sediments driven by anaerobic ammonium oxidation coupled to microbial reduction of Mn(IV)-oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171368. [PMID: 38438040 DOI: 10.1016/j.scitotenv.2024.171368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 μM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 μg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 μg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.
Collapse
Affiliation(s)
- Karen A Avendaño
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 2001, 76230 Querétaro, Mexico
| | - Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 2001, 76230 Querétaro, Mexico
| | - Edgardo I Valenzuela
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo Samperio-Ramos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Víctor F Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 2001, 76230 Querétaro, Mexico.
| |
Collapse
|
3
|
Younas M, Bacha AUR, Khan K, Nabi I, Ullah Z, Humayun M, Hou J. Application of manganese oxide-based materials for arsenic removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170269. [PMID: 38266733 DOI: 10.1016/j.scitotenv.2024.170269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.
Collapse
Affiliation(s)
- Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan China
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology Wuhan, 430074, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
4
|
Wang F, Zhang J, Hu J, Wang H, Zeng Y, Wang Y, Huang P, Deng H, Dahlgren RA, Gao H, Chen Z. Simultaneous suppression of As mobilization and N 2O emission from NH 4+/As-rich paddy soils by combined nitrate and birnessite amendment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133451. [PMID: 38228004 DOI: 10.1016/j.jhazmat.2024.133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/25/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
The environmental impacts of As mobilization and nitrous oxide (N2O) emission in flooded paddy soils are serious issues for food safety and agricultural greenhouse gas emissions. Several As immobilization strategies utilizing microbially-mediated nitrate reducing-As(III) oxidation (NRAO) and birnessite (δ-MnO2)-induced oxidation/adsorption have proven effective for mitigating As bioavailability in flooded paddy soils. However, several inefficiency and unsustainability issues still exist in these remediation approaches. In this study, the effects of a combined treatment of nitrate and birnessite were assessed for the simultaneous suppression of As(III) mobilization and N2O emission from flooded paddy soils. Microcosm incubations confirmed that the combined treatment achieved an effective suppression of As(III) mobilization and N2O emission, with virtually no As(T) released and at least a 87% decrease in N2O emission compared to nitrate treatment alone after incubating for 8 days. When nitrate and birnessite are co-amended to flooded paddy soils, the activities of denitrifying enzymes within the denitrification electron transport pathway were suppressed by MnO2. As a result, the majority of applied nitrate participated in nitrate-dependent microbial Mn(II) oxidation. The regenerated biogenetic MnO2 was available to facilitate subsequent cycles of As(III) immobilization and concomitant N2O emission suppression, sustainable remediation strategy. Moreover, the combined nitrate-birnessite amendment promoted the enrichment of Pseudomonas, Achromobacter and Cupriavidu, which are known to participate in the oxidation of As(III)/Mn(II). Our findings document strong efficacy for the combined nitrate/birnessite treatment as a remediation strategy to simultaneously mitigate As-pollution and N2O emission, thereby improving food safety and reducing greenhouse gas emissions from flooded paddy soils enriched with NH4+ and As.
Collapse
Affiliation(s)
- Feng Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Yanqiong Zeng
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Peng Huang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Huanhuan Deng
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Randy A Dahlgren
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA
| | - Hui Gao
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Zheng Chen
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
5
|
Li WH, Xiang ZTY, Lu AX, Wang SS, Yan CH. Manganese-induced apoptosis through the ROS-activated JNK/FOXO3a signaling pathway in CTX cells, a model of rat astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115326. [PMID: 37556958 DOI: 10.1016/j.ecoenv.2023.115326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Manganese (Mn) is an essential trace element that maintains many normal physiological functions. However, multi-system disorders would occur once overexposure to Mn, especially neurotoxicity. Despite evidence demonstrating the critical role of ROS-activated JNK/FOXO3a signaling pathway in neuronal survival, the specific mechanisms by which it contributes to Mn-induced neurotoxicity are still unclear. The objectives of this study was to examine the modulation of the JNK/FOXO3a signaling pathway, which is activated by ROS, in Mn-induced apoptosis, using a rat brain astrocyte cell line (CTX cells). This study found that a dose-dependent decrease in cell viability of CTX cells was observed with 150, 200, 250, 300 μmol/L Mn. The results of apoptosis-related protein assay showed that Mn decreased the expression of anti-apoptotic protein Bcl-2 and enhanced the expression of apoptosis-related proteins like Bax and Cleaved-Caspase3. In addition, treatment with Mn resulted in elevated ROS levels and increased phosphorylation levels of JNK. Conversely, phosphorylation of nuclear transcription factors FOXO3a, which regulates expression of transcription factors including Bim and PUMA, was decreased. Depletion of ROS by N-acetyl-L-cysteine (NAC) and inhibition of the JNK pathway by SP600125 prevented Mn-induced JNK/FOXO3a pathway activation and, more importantly, the level of apoptosis was also significantly reduced. Confirmation of Mn-induced apoptosis in CTX cells through ROS generation and activation of the JNK/FOXO3a signaling pathway was the outcome of this study. These findings offer fresh insights into the neurotoxic mechanisms of Mn and therapeutic targets following Mn exposure.
Collapse
Affiliation(s)
- Wan-He Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ting-Yan Xiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Nunes M, Alves Martins MV, Frontalini F, Bouchet VMP, Francescangeli F, Hohenegger J, Figueira R, Senez-Mello TM, Louzada Castelo WF, Damasceno FL, Laut L, Duleba W, Mello E Sousa SHD, Antonioli L, Geraldes MC. Inferring the ecological quality status based on living benthic foraminiferal indices in transitional areas of the Guanabara bay (SE Brazil). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121003. [PMID: 36623785 DOI: 10.1016/j.envpol.2023.121003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for ∼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.
Collapse
Affiliation(s)
- Márcia Nunes
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil.
| | - Maria Virgínia Alves Martins
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil; Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Fabrizio Frontalini
- Department of Pure and Applied Sciences, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy.
| | - Vincent M P Bouchet
- Univ. Lille, CNRS, Univ. Littoral Côte D'Opale, IRD, UMR8187, LOG, Laboratoire D'Océanologie et de Géosciences, Station Marine de Wimereux, F 59000, Lille, France.
| | - Fabio Francescangeli
- Department of Geosciences, University of Fribourg, Chemin Du Musée 6, 1700 Fribourg/Freiburg, Switzerland.
| | - Johann Hohenegger
- Universität Wien, Institut für Paläontologie, Althanstrasse 17, A 1090, Wien, Austria.
| | - Rubens Figueira
- Instituto Oceanográfico, Universidade de São Paulo (IOUSP), Address: Pça. Do Oceanográfico, 191, Butantã, São Paulo, 05508 120, Brazil.
| | - Thaise M Senez-Mello
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil; Marine Geology Lab, LAGEMAR, Federal Fluminense University (UFF), Rio de Janeiro, Brazil.
| | - Wellen Fernanda Louzada Castelo
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil.
| | - Fabrício Leandro Damasceno
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil.
| | - Lazaro Laut
- Universidade Federal Do Estado Do Rio de Janeiro, UNIRIO, Laboratório de Micropaleontologia, Av. Pasteur 458, S. 500, Urca, Rio de Janeiro, 22290-240, Brazil.
| | - Wania Duleba
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Rua Arlindo Bettio, 1000, Vila Guaraciaba, São Paulo - SP, Brazil.
| | - Silvia Helena de Mello E Sousa
- Instituto Oceanográfico, Universidade de São Paulo (IOUSP), Address: Pça. Do Oceanográfico, 191, Butantã, São Paulo, 05508 120, Brazil.
| | - Luzia Antonioli
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil.
| | - Mauro César Geraldes
- Universidade Do Estado Do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier, 524, Sala 2020A, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Ciancio Casalini L, Piazza A, Masotti F, Garavaglia BS, Ottado J, Gottig N. Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in Pseudomonas sp. MOB-449. Front Mol Biosci 2022; 9:1015582. [DOI: 10.3389/fmolb.2022.1015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mn removal from groundwater by biological sand filter technology is negatively impacted by low temperatures in winter periods. Therefore, the need to study Mn(II)-oxidizing bacteria (MOB) having the potential to oxidize Mn(II) and form biofilms at low temperatures is imperative. These MOB can have potential as inocula for sand filter bioaugmentation strategies to optimize Mn removal during winter periods. We previously showed that a Pseudomonas sp. MOB-449 (MOB-449), isolated from a Mn biofilter, oxidizes Mn(II) in a biofilm-dependent way at low temperatures. In this work, MOB-449 Mn(II) oxidation and growth capacities were evaluated under planktonic and biofilm conditions at different temperatures. At 18°C, MOB-449 showed enhanced biofilm formation due to the addition of Mn(II) to the medium correlating with Mn(II) oxidation, compared to biofilms grown in control medium. Moreover, this enhancement on biofilm formation due to the addition of Mn(II) was only observed at 18°C. At this temperature, Mn(II) oxidation in membrane fractions collected from biofilms was induced by uncoupling oxidative phosphorylation from the electron transport chain with 2,4-Dinitrophenol. In Pseudomonas, a role for c-type cytochrome in Mn(II) oxidation has been demonstrated. Accordingly, transcriptional profiles of all terminal oxidases genes found in MOB-449 showed an induction of cytochrome c terminal oxidases expression mediated by Mn(II) oxidation at 18°C. Finally, heme peroxidase activity assays and MS analysis revealed that PetC, a cytochrome c5, and also CcmE, involved in the cytochrome c biogenesis machinery, are induced at 18°C only in the presence of Mn(II). These results present evidence supporting that cytochromes c and also the cytochrome c terminal oxidases are activated at low temperatures in the presence of Mn(II). Overall, this work demonstrate that in MOB-449 Mn(II) oxidation is activated at low temperatures to gain energy, suggesting that this process is important for survival under adverse environmental conditions and contributing to the understanding of the physiological role of bacterial Mn(II) oxidation.
Collapse
|