1
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Gelalcha BD, Mohamed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology of extended-spectrum beta-lactamase-producing- Klebsiella species in East Tennessee dairy cattle farms. Front Microbiol 2024; 15:1439363. [PMID: 39380685 PMCID: PMC11458399 DOI: 10.3389/fmicb.2024.1439363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction The rising prevalence of Extended-Spectrum Beta-Lactamase (ESBL)-producing Klebsiella species (spp.) poses a significant threat to human and animal health and environmental safety. To address this pressing issue, a comprehensive study was undertaken to elucidate the burden and dissemination mechanisms of ESBL-Klebsiella spp. in dairy cattle farms. Methods Fifty-seven Klebsiella species were isolated on CHROMagar™ ESBL plates and confirmed with MADLI-TOF MS and whole genome sequenced from 14 dairy farms. Results and discussion Six families of beta-lactamase (bla) (bla CTX-M, bla SHV, bla TEM, bla OXY, bla OXA, and bla SED) were detected in ESBL-Klebsiella spp. genomes. Most (73%) of isolates had the first three types of beta-lactamase genes, with bla SHV being the most frequent, followed by bla CTX-M. Most (93%) isolates harbored two or more bla genes. The isolates were genotypically MDR, with 26 distinct types of antibiotic resistance genes (ARGs) and point mutations in gyrA, gyrB, and parC genes. The genomes also harbored 22 different plasmid replicon types, including three novel IncFII. The IncFII and Col440I plasmids were the most frequent and were associated with bla CTXM-27 and qnrB19 genes, respectively. Eighteen distinct sequence types (STs), including eight isolates with novel STs of K. pneumoniae, were detected. The most frequently occurring STs were ST353 (n = 8), ST469 (n = 6), and the novel ST7501 (n = 6). Clusters of ESBL-Klebsiella strains with identical STs, plasmids, and ARGs were detected in multiple farms, suggesting possible clonal expansion. The same ESBL variant was linked to identical plasmids in different Klebsiella STs in some farms, suggesting horizontal spread of the resistance gene. The high burden and dual spread mechanism of ESBL genes in Klebsiella species, combined with the emergence of novel sequence types, could swiftly increase the prevalence of ESBL-Klebsiella spp., posing significant risks to human, animal, and environmental health. Immediate action is needed to implement rigorous surveillance and control measures to mitigate this risk.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohamed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga Edema Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Ghamari M, Emaneini M, Hemmati S, Jabalameli F, Beigverdi R. Phenotypic and genotypic evaluation of aminoglycoside resistance in Escherichia coli isolated from patients with blood stream infections in Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:187-192. [PMID: 38854982 PMCID: PMC11162164 DOI: 10.18502/ijm.v16i2.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Escherichia coli is a significant causative agent of bloodstream infections (BSIs). Aminoglycoside antibiotics play a crucial role in treating severe infections such as sepsis and pneumonia. However, resistance to these antibiotics often occurs due to the production of aminoglycoside-modifying enzymes (AMEs). This study was conducted to assess antimicrobial susceptibility patterns against various aminoglycosides and to determine the prevalence of common AME genes in E. coli strains isolated from BSIs. Materials and Methods Sixty-five E. coli isolates were obtained from blood samples in a referral hospital in Tehran, Iran. The susceptibility patterns of aminoglycosides were determined using disk diffusion method and AMEs genes were investigated using PCR assay. Results Resistance to aminoglycosides was observed in 64.6% (42/65) of the isolates. The most frequent resistance rate was found for kanamycin (44.6%) and gentamicin (38.5%), followed by tobramycin (29.2%) and amikacin (4.6%). The most frequent AME gene was aac(3)-IVa, which detected in 49.2% isolates, followed by aac(6)-Ib (40%), aac(3)-IIa (32.3%), and ant(2)-Ia (30.8%), respectively. Conclusion Athough the findings of this survey are based on specimens collected from a single hospital, our study shows that the high prevalence of aminoglycoside resistance is primarily attributed to the presence of the aac(3)-Iva, aac(6)-Ib and aac(3)-IIa genes. The low rate of resistance to amikacin makes this antibiotic a good candidate for treatment of BSIs due to E. coli.
Collapse
Affiliation(s)
- Mahsa Ghamari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hemmati
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
5
|
Khoshnood S, Akrami S, Saki M, Motahar M, Masihzadeh S, Daneshfar S, Meghdadi H, Abbasi Montazeri E, Abdi M, Farshadzadeh Z. Molecular evaluation of aminoglycosides resistance and biofilm formation in Klebsiella pneumoniae clinical isolates: A cross-sectional study. Health Sci Rep 2023; 6:e1266. [PMID: 37205937 PMCID: PMC10190123 DOI: 10.1002/hsr2.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Background and Aims Resistance to antibiotics and the capability to develop biofilm as two main virulent determinants of Klebsiella pneumoniae have important role in infection persistence. The aim of the study was to evaluate the association between the prevalence of aminoglycoside resistance and virulence genes and biofilm formation capacity in K. pneumoniae strains isolated from hospitalized patients in South-West of Iran. Methods A total of 114 non-duplicate clinical isolates of K. pneumoniae collected from Ahvaz teaching hospitals. Identification of species was performed by biochemical tests and then confirmed by polymerase chain reaction (PCR) of rpoB gene. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Biofilm formation was assessed by microtiter plate method. Finally, PCR was conducted to detect virulence gene determinants including fimbrial genes, aminoglycoside modifying enzymes- and 16S rRNA methylase (RMTase) genes. Results Totally, all collected strains were carbapenem resistant and showed multidrug- and extensively drug-resistance phenotype (75% and 25%, respectively). Seventy-one percent (n = 81) of isolates were non-susceptible to aminoglycosides. Among aminoglycoside antibiotics, K. pneumoniae isolates showed the highest and lowest resistance rates to tobramycin (71%) and the amikacin (25%), respectively. All biofilm producer strains were positive for the presence virulence determinants including ecpA, fimA, mrkD, and mrkA. Of 81 aminoglycosides non-susceptible isolates 33% were positive for the presence ant (2″)-Ia as the most prevalent gene followed by aac (3')-IIa and armA (27%), aac (6')-Ib (18%), and aph (3')-Ia (15%). Conclusion K. pneumoniae isolates showed the highest and the lowest aminoglycoside resistance rates to tobramycin and amikacin, respectively. Majority of isolates were biofilm producers and there was significant association between antibiotic resistance pattern and the strength of biofilm production. The ant(2″)-Ia, aac (3')-IIa, and armA genes in aminoglycoside-resistant isolates.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Sousan Akrami
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Morteza Saki
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Moloudsadat Motahar
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sara Masihzadeh
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sara Daneshfar
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Meghdadi
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Marjan Abdi
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Zahra Farshadzadeh
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
6
|
Epidemiology, molecular characterization, and drug resistance of IncHI5 plasmids from Enterobacteriaceae. Int Microbiol 2022; 26:371-378. [PMID: 36383268 DOI: 10.1007/s10123-022-00299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The increasingly frequent occurence of IncHI5 plasmids has attracted worldwide attention. The aim of this study was to perform an in-depth bioinformatics analysis to determine the genetic characteristics and global distribution of all IncHI5 plasmids. The geographic distribution and epidemiology of all IncHI5 plasmids from GenBank were analyzed based on relevant literature reports and background information from the National Center for Biotechnology Information (NCBI). Detailed annotation of antibiotic resistance genes was performed. A total of 65 IncHI5 plasmid genomes were collected in GenBank. All IncHI5 plasmids were carried by Enterobacteriaceae, of which Klebsiella pneumoniae accounted for the largest proportion (50%, 33/65). The host bacterium of IncHI5 plasmids was mainly isolated from Homo Sapiens (81%, 53/65). All strains carrying IncHI5 plasmids were mainly distributed in China (83%, 54/65). Evolutionary analysis can divide IncHI5 plasmids into two groups, namely Groups I/II, of which Group II was more widely distributed worldwide. This study showed that Enterobacteriaceae, especially Klebsiella, was the main host for IncHI5 plasmid. Almost all IncHI5 plasmids carried multiple types of antibiotic resistance genes, related to Tn1696 or Tn6535. The IncHI5 plasmids should be of continuing interest as good repositories for antibiotic resistance genes.
Collapse
|
7
|
Complete Genome Sequence of Klebsiella quasipneumoniae MMCC7, Isolated from an Eclectus Parrot (Eclectus roratus). Microbiol Resour Announc 2022; 11:e0017122. [PMID: 35467363 PMCID: PMC9119098 DOI: 10.1128/mra.00171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Klebsiella quasipneumoniae MMCC7 is a multidrug- and heavy metal-resistant strain isolated from the feces of a pet shop eclectus parrot in Hong Kong. The complete genome, a single chromosome and circular plasmid (5,382,488 bp; G+C content, 57.79%), was determined by hybrid assembly.
Collapse
|
8
|
Co-Occurrence of Rare ArmA-, RmtB-, and KPC-2-Encoding Multidrug-Resistant Plasmids and Hypervirulence iuc Operon in ST11-KL47 Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0237121. [PMID: 35323034 PMCID: PMC9045180 DOI: 10.1128/spectrum.02371-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the comparatively limited development of new antibiotics pose a major threat to public health. Aminoglycosides are important options that can lower the mortality rate effectively in combination therapy with β-lactam agents. However, in this study, we observed two multidrug-resistant (MDR) K. pneumoniae named 1632 and 1864 that exhibited high-level resistance to both carbapenems and aminoglycosides. Through whole-genome sequencing (WGS), the unusual co-occurrence of rmtB, armA, and blaKPC-2 genes, associating with two key resistance plasmids, was observed in two isolates. Notably, we also found that the armA resistance gene and virulence factor iuc operon co-occurred on the same plasmid in K. pneumoniae 1864. Detailed comparative genetic analysis showed that all these plasmids were recognized as mobilizable plasmids, as they all carry the essential oriT site. Results of conjugation assay indicated that armA-positive plasmids in two isolates could self-transfer to Escherichia coli J53 effectively, especially, the p1864-1 plasmid, which could cotransfer hypervirulent and multidrug-resistant phenotypes to other isolates. Moreover, multiple insertion sequences (ISs) and transposons (Tns) were also found surrounding the vital resistant genes, which could even form a large antibiotic resistance island (ARI) and could stimulate mobilization of resistant determinants. Overall, we report the uncommon coexistence of armA plasmid, rmtB-blaKPC-2 plasmid, and even iuc virulence operon-encoding plasmid in K. pneumoniae isolates, which greatly increased the spread of these high-risk phenotypes and which are of great concern. IMPORTANCE Carbapenemase-producing Klebsiella pneumoniae have become a great challenge for antimicrobial chemotherapy, while aminoglycosides can lower the mortality rate effectively in combination therapy with them. Unfortunately, we isolated two K. pneumoniae from blood sample of patients that not only exhibited high-level resistance to carbapenems and aminoglycosides but also showed the unusual co-occurrence of the rmtB, armA, and blaKPC-2 genes. These elements were all located on mobile plasmids and flanked by polymorphic mobile genetic elements (MGEs). What’s worse most, we also identified a conjugative virulent MDR plasmid, coharboring multiple resistant determinants, and iuc operon, which was confirmed could transfer such high-risk phenotype to other isolates. The emergence of such conjugative virulence plasmids may promote the rapid dissemination of virulence-encoding elements among Gram-negative pathogens. This uncommon coexistence of rmtB, armA, blaKPC-2, and iuc virulence operon-encoding plasmids in K. pneumoniae, presents a huge threat to clinical treatment. Future studies are necessary to evaluate the prevalence of such isolates.
Collapse
|
9
|
Moghnia OH, Al-Sweih NA. Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait. Microorganisms 2022; 10:microorganisms10030507. [PMID: 35336083 PMCID: PMC8949579 DOI: 10.3390/microorganisms10030507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The spread of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae is a global concern. The management of infections caused by multidrug resistance (MDR) isolates poses substantial clinical challenges in both hospitals and communities. This study aimed to investigate the genetic characteristics and variations of MDR E. coli and K. pneumoniae isolates. Bacterial identification and antibiotic susceptibility testing against 19 antibiotics were performed by standard methods. Whole genome sequencing (WGS) was carried out on eight carbapenem-resistant isolates using an Illumina MiSeq platform. The assembled draft genomes were annotated, then sequences were blasted against antimicrobial resistance (AMR) genes database. WGS detected several resistance genes mediating the production of β-lactamases, including carbapenems and extended-spectrum β-lactamase genes as (blaOXA-1/-48, blaKPC-2/-29, blaCMY-4/-6, blaSHV-11/-12, blaTEM-1, blaCTX-M-15, blaOKP-B, blaACT and blaEC). Furthermore quinolone resistance including oqxA/oqxB, aac(6′)-Ib-cr5, gyrA_D87N, gyrA_S83F, gyrA_S83L, parC_S80I, parE_S458A, parE_I355T, parC_S80I, and qnrB1. In addition to aminoglycoside modifying enzymes genes (aph(6)-Id, aph(3″)-Ib, aac(3)-IIa, aac(6′)-Ib, aadA1, aadA2 and aadA5), trimethoprim-sulfamethoxazole (dfrA12/A14/A17 and sul1/sul2), tetracycline (tetA and tetB), fosfomycin (fosA and uhpT_E350Q) resistance genes, while other genes were detected conferring chloramphenicol (floR, catA2, and efflux pump cmIA5), macrolides resistance (mph(A) and erm(B), and quaternary ammonium efflux pump qacEdelta. Bleomycin and colistin resistance genes were detected as ble and pmrB_R256G, respectively. Comprehensive analysis of MDR strains provided by WGS detected variable antimicrobial resistance genes and their precise resistance mechanism. WGS is essential for control and prevention strategies to combat the growing threat of AMR and the implementation of multifaceted interventions are needed.
Collapse
|
10
|
Bisso Ndezo B, Tokam Kuaté CR, Dzoyem JP. Synergistic Antibiofilm Efficacy of Thymol and Piperine in Combination with Three Aminoglycoside Antibiotics against Klebsiella pneumoniae Biofilms. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:7029944. [PMID: 34790281 PMCID: PMC8592759 DOI: 10.1155/2021/7029944] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thymol and piperine are two naturally occurring bioactive compounds with several pharmacological activities. In this study, their antibiofilm potential either alone or in combination with three aminoglycoside antibiotics was evaluated against a biofilm of Klebsiella pneumoniae. METHODS Determination of antimicrobial susceptibility was performed using the broth microdilution method. Biofilm formation was evaluated by the microtiter plate method. Antibiofilm activity was determined using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium-bromide (MTT) assay. The combination studies were performed by the checkerboard microdilution method. RESULTS The minimum biofilm inhibitory concentration (MBIC) of streptomycin was reduced by 16- to 64-fold when used in combination with thymol, while the MBIC of kanamycin was reduced by 4-fold when combined with piperine. The minimum biofilm eradication concentration (MBEC) values of streptomycin, amikacin, and kanamycin were, respectively, 16- to 128-fold, 4- to 128-fold, and 8- to 256-fold higher than the planktonic minimum inhibitory concentration (MIC). Thymol combined with streptomycin or kanamycin showed synergic effects against the preformed biofilm with 16- to 64-fold reduction in the minimum biofilm eradication concentration values of each antibiotic in combination. Piperine acted also synergically with kanamycin with an 8- to 16-fold reduction in the minimum biofilm eradication concentration values of kanamycin in combination. CONCLUSION The association of thymol with antibiotics showed a strong synergistic effect both in the inhibition of biofilm formation and the destruction of the preformed biofilm of K. pneumoniae. This study suggests that a combination of thymol with streptomycin, amikacin, or kanamycin could be a promising alternative therapy to overcome the problem of K. pneumoniae biofilm-associated infections.
Collapse
Affiliation(s)
- Borel Bisso Ndezo
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christian Ramsès Tokam Kuaté
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jean Paul Dzoyem
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|