1
|
Hochart C, Rouzé H, Rivière B, Ruscheweyh HJ, Hédouin L, Pochon X, Steneck RS, Poulain J, Belser C, Nugues MM, Galand PE. High diversity of crustose coralline algae microbiomes across species and islands, and implications for coral recruits. ENVIRONMENTAL MICROBIOME 2024; 19:112. [PMID: 39710769 DOI: 10.1186/s40793-024-00640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Crustose Coralline Algae (CCA) play a crucial role in coral reef ecosystems, contributing significantly to reef formation and serving as substrates for coral recruitment. The microbiome associated with CCAs may promote coral recruitment, yet these microbial communities remain largely understudied. This study investigates the microbial communities associated with a large number of different CCA species across six different islands of French Polynesia, and assess their potential influence on the microbiome of coral recruits. RESULTS Our findings reveal that CCA harbor a large diversity of bacteria that had not been reported until now. The composition of these microbial communities was influenced by geographic location, and was also closely linked to the host species, identified at a fine taxonomic unit using the 16S rRNA gene of the CCA chloroplast. We demonstrate the usefulness of these ecologically meaningful units that we call CCA chlorotypes. Additionally, we observed a correlation between host phylogeny and microbiome composition (phylosymbiosis) in two CCA species. Contrary to expectations, the CCA microbiome did not act as a microbial reservoir for coral recruits. However, the microbial community of coral recruits varied according to the substrate on which they grew. CONCLUSIONS The study significantly expands the number of characterized CCA microbiomes, and provides new insight into the extensive diversity of these microbial communities. We show distinct microbiomes between and within CCA species, characterized by specific chloroplast 16S rRNA gene sequences. We term these distinct groups "chlorotypes", and demonstrate their utility to differentiate CCA. We also show that only few bacterial taxa were shared between CCA and coral recruits growing in contact with them. Nevertheless, we observed that the microbial community of coral recruits varied depending on the substrate they grew on. We conclude that CCA and their associated bacteria influence the microbiome composition of the coral recruits.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Héloïse Rouzé
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
- Marine Laboratory, University of Guam, Mangilao, 96923, Guam
| | - Béatrice Rivière
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Laetitia Hédouin
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Xavier Pochon
- Molecular Surveillance, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Maggy M Nugues
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France.
| |
Collapse
|
2
|
Hernández-Zulueta J, Rubio-Bueno S, Zamora-Tavares MDP, Vargas-Ponce O, Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA. Metabarcoding the Bacterial Assemblages Associated with Toxopneustes roseus in the Mexican Central Pacific. Microorganisms 2024; 12:1195. [PMID: 38930577 PMCID: PMC11205562 DOI: 10.3390/microorganisms12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Sharix Rubio-Bueno
- Programa de Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
| | - María del Pilar Zamora-Tavares
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Ofelia Vargas-Ponce
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Alma Paola Rodríguez-Troncoso
- Laboratorio de Ecología Marina, Centro Universitario de la Costa (CUCosta), Universidad de Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
3
|
Montes-Herrera JC, Cimoli E, Cummings VJ, D'Archino R, Nelson WA, Lucieer A, Lucieer V. Quantifying pigment content in crustose coralline algae using hyperspectral imaging: A case study with Tethysphytum antarcticum (Ross Sea, Antarctica). JOURNAL OF PHYCOLOGY 2024; 60:695-709. [PMID: 38558363 DOI: 10.1111/jpy.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400-800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, Tethysphytum antarcticum (Hapalidiales), from two distinct locations. We validated our measurements with pigment extractions and spectrophotometry analysis, in addition to DNA barcoding using the psbA marker. Targeted spectral indices were developed and correlated with phycobilin content using linear mixed models (R2 = 0.64-0.7). Once applied to the HSI, the models revealed the distinct phycoerythrin spatial distribution in the two site-specific CCA phenotypes, with thin and thick crusts, respectively. This study advances the capabilities of hyperspectral imaging as a tool to quantitatively study CCA pigmentation in relation to their phenotypic plasticity, which can be applied in laboratory studies and potentially in situ surveys using underwater hyperspectral imaging systems.
Collapse
Affiliation(s)
- Juan C Montes-Herrera
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Emiliano Cimoli
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Vonda J Cummings
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Roberta D'Archino
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
- Tāmaki Paenga Hira Auckland Museum & School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Arko Lucieer
- School of Geography, Planning, and Spatial Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Vanessa Lucieer
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
5
|
Pattarach K, Surachat K, Liu SL, Mayakun J. Water depth outweighs reef condition in shaping non-geniculate coralline algae-associated microbial communities in coral reefs: A case study from Thailand. Heliyon 2024; 10:e25486. [PMID: 38356583 PMCID: PMC10864967 DOI: 10.1016/j.heliyon.2024.e25486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Red calcified non-geniculate coralline algae (NGCA) provide habitat structures, stabilize reef structures, and foster coral larval settlement and metamorphosis. Moreover, the microbes associated with NGCA are dependent on the NGCA host species and are affected by environmental factors; however, little is known about the influence of reef conditions and depth gradients on the associated microbial communities and NGCA. In this study, we collected NGCA under different reef conditions and depth gradients and characterized the microbial communities using the V3-V4 hypervariable regions of the 16S rRNA gene. Metagenomic analysis revealed 2 domains, 51 phyla, 123 classes, and 210 genera. The NGCA-associated bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Acidobacteriota. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial classes. Differences in microbial diversity and richness were not apparent between reef conditions and depth gradients. However, there was a significant difference in bacterial evenness among the depth gradients. The bacterial abundance associated with NGCA was greater in deep zones than in shallow zones. The shallow zone exhibited a greater relative abundance of all gene functions than the deep zone, indicating differences in the distribution of gene functions. This study showed that the microbial communities associated with red calcified NGCA are diverse, and that the depth gradient affects their abundance and evenness, highlighting the need for further research to understand the functional roles of these microbial communities in coral reef conservation.
Collapse
Affiliation(s)
- Kattika Pattarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Science & Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Shao-Lun Liu
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, 40704, Taiwan
| | - Jaruwan Mayakun
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|