1
|
Seo H, Kim JH, Lee SM, Lee SW. The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health. THE PLANT PATHOLOGY JOURNAL 2024; 40:251-260. [PMID: 38835296 PMCID: PMC11162857 DOI: 10.5423/ppj.rw.01.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024]
Abstract
Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.
Collapse
Affiliation(s)
- Hyojun Seo
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Ju Hui Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
2
|
Duckett M, Taylor MN, Bowman C, Vega NM. Parallel evolution of alternate morphotypes of Chryseobacterium gleum during experimental evolution with Caenorhabditis elegans. FEMS Microbiol Ecol 2024; 100:fiae039. [PMID: 38549432 PMCID: PMC11004935 DOI: 10.1093/femsec/fiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial evolution within polymicrobial communities is a complex process. Here, we report within-species diversification within multispecies microbial communities during experimental evolution with the nematode Caenorhabditis elegans. We describe morphological diversity in the target species Chryseobacterium gleum, which developed a novel colony morphotype in a small number of replicate communities. Alternate morphotypes coexisted with original morphotypes in communities, as well as in single-species experiments using evolved isolates. We found that the original and alternate morphotypes differed in motility and in spatial expansion in the presence of C. elegans. This study provides insight into the emergence and maintenance of intraspecies diversity in the context of microbial communities.
Collapse
Affiliation(s)
- Marissa Duckett
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Megan N Taylor
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Claire Bowman
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Nic M Vega
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30322, United States
| |
Collapse
|
3
|
Magesh S, Hurley AI, Nepper JF, Chevrette MG, Schrope JH, Li C, Beebe DJ, Handelsman J. Surface colonization by Flavobacterium johnsoniae promotes its survival in a model microbial community. mBio 2024; 15:e0342823. [PMID: 38329367 PMCID: PMC10936215 DOI: 10.1128/mbio.03428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, The Hitchhikers of the Rhizosphere (THOR), we determined the effects of colonization on the fitness of F. johnsoniae in the community. Insertion sequencing, a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that the deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step toward unraveling these interactions, we explored the role of surface colonization in microbial community interactions using The Hitchhikers Of the Rhizosphere (THOR), a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae, Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote the success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.
Collapse
Affiliation(s)
- Shruthi Magesh
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda I. Hurley
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F. Nepper
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Jonathan H. Schrope
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Jo Handelsman
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Yin CC, Yang LL, Xin YH, Ye J, Liu Q. Identification of Flavobacterium algoritolerans sp. nov. and Flavobacterium yafengii sp. nov., two novel members of the genus Flavobacterium. Int J Syst Evol Microbiol 2023; 73. [PMID: 37796242 DOI: 10.1099/ijsem.0.006072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Six psychrotolerant, Gram-stain-negative, aerobic bacterial strains, designated as LB1P51T, LB2P87T, LB2P84, LB3P48, LB3R18 and XS2P67, were isolated from glaciers on the Tibetan Plateau, PR China. The results of 16S rRNA gene analysis confirmed their classification within the genus Flavobacterium. Strain LB2P87T displayed the highest sequence similarity to Flavobacterium sinopsychrotolerans 0533T (98.18 %), while strain LB1P51T exhibited the highest sequence similarity to Flavobacterium glaciei CGMCC 1.5380T (98.15 %). Strains LB2P87T and LB1P51T had genome sizes of 3.8 and 3.9 Mb, respectively, with DNA G+C contents of 34.2 and 34.1 %, respectively. Pairwise average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) calculations revealed that these strains represented two distinct species within the genus Flavobacterium. The results of phylogenomic analysis using 606 core genes indicated that the six strains formed a distinct clade and were most closely related to F. glaciei CGMCC 1.5380T. The ANI and dDDH values between the two species and other members of the genus Flavobacterium were below 90.3 and 40.1 %, respectively. Genome relatedness, the results of phylogenomic analysis and phenotypic characteristics collectively support the proposal of two novel species of the genus Flavobacterium: Flavobacterium algoritolerans sp. nov. (LB1P51T = CGMCC 1.11237T = NBRC 114813T) and Flavobacterium yafengii sp. nov. (LB2P87T = CGMCC 1.11249T = NBRC 114814T).
Collapse
Affiliation(s)
- Ce-Ce Yin
- Hebei University, BaoDing, Hebei province, 071002, PR China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei-Lei Yang
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Hua Xin
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Qing Liu
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
5
|
Escribano MP, Balado M, Toranzo AE, Lemos ML, Magariños B. The secretome of the fish pathogen Tenacibaculum maritimum includes soluble virulence-related proteins and outer membrane vesicles. Front Cell Infect Microbiol 2023; 13:1197290. [PMID: 37360528 PMCID: PMC10288586 DOI: 10.3389/fcimb.2023.1197290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Tenacibaculum maritimum, the etiological agent of tenacibaculosis in marine fish, constitutively secretes extracellular products (ECPs) in which protein content has not been yet comprehensively studied. In this work, the prevalence of extracellular proteolytic and lipolytic activities related to virulence was analyzed in 64 T. maritimum strains belonging to the O1-O4 serotypes. The results showed the existence of a great intra-specific heterogeneity in the enzymatic capacity, particularly within serotype O4. Thus, the secretome of a strain belonging to this serotype was characterized by analyzing the protein content of ECPs and the possible production of outer membrane vesicles (OMVs). Notably, the ECPs of T. maritimum SP9.1 contain a large amount of OMVs that were characterized by electron microscopy and purified. Thus, ECPs were divided into soluble (S-ECPs) and insoluble fractions (OMVs), and their protein content was analyzed by a high-throughput proteomic approach. A total of 641 proteins were identified in ECPs including some virulence-related factors, which were mainly found in one of the fractions, either OMVs or S-ECPs. Outer membrane proteins such as TonB-dependent siderophore transporters and the type IX secretion system (T9SS)-related proteins PorP, PorT, and SprA appeared to be mainly associated with OMVs. By contrast, putative virulence factors such as sialidase SiaA, chondroitinase CslA, sphingomyelinase Sph, ceramidase Cer, and collagenase Col were found only in the S-ECPs. These findings clearly demonstrate that T. maritimum releases, through surface blebbing, OMVs specifically enriched in TonB-dependent transporters and T9SS proteins. Interestingly, in vitro and in vivo assays also showed that OMVs could play a key role in virulence by promoting surface adhesion and biofilm formation and maximizing the cytotoxic effects of the ECPs. The characterization of T. maritimum secretome provides insights into ECP function and can constitute the basis for future studies aimed to elucidate the full role of OMVs in the pathogenesis of fish tenacibaculosis.
Collapse
|
6
|
Jo H, Park MS, Lim Y, Kang I, Cho JC. Ten Novel Species Belonging to the Genus Flavobacterium, Isolated from Freshwater Environments: F. praedii sp. nov., F. marginilacus sp. nov., F. aestivum sp. nov., F. flavigenum sp. nov., F. luteolum sp. nov., F. gelatinilyticum sp. nov., F. aquiphilum sp. nov., F. limnophilum sp. nov., F. lacustre sp. nov., and F. eburneipallidum sp. nov. J Microbiol 2023:10.1007/s12275-023-00054-4. [PMID: 37219690 DOI: 10.1007/s12275-023-00054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Eleven bacterial strains were isolated from freshwater environments and identified as Flavobacterium based on 16S rRNA gene sequence analyses. Complete genome sequences of the 11 strains ranged from 3.45 to 5.83 Mb with G + C contents of 33.41-37.31%. The average nucleotide identity (ANI) values showed that strains IMCC34515T and IMCC34518 belonged to the same species, while the other nine strains represented each separate species. The ANI values between the strains and their closest Flavobacterium species exhibited ≤ 91.76%, indicating they represent each novel species. All strains had similar characteristics such as being Gram-stain-negative, rod-shaped, and contained iso-C15:0 as the predominant fatty acid, menaquinone-6 as the respiratory quinone, and phosphatidylethanolamine and aminolipids as major polar lipids. Genomic, phylogenetic, and phenotypic characterization confirmed that the 11 strains were distinct from previously recognized Flavobacterium species. Therefore, Flavobacterium praedii sp. nov. (IMCC34515T = KACC 22282 T = NBRC 114937 T), Flavobacterium marginilacus sp. nov. (IMCC34673T = KACC 22284 T = NBRC 114940 T), Flavobacterium aestivum sp. nov. (IMCC34774T = KACC 22285 T = NBRC 114941 T), Flavobacterium flavigenum sp. nov. (IMCC34775T = KACC 22286 T = NBRC 114942 T), Flavobacterium luteolum sp. nov. (IMCC34776T = KACC 22287 T = NBRC 114943 T), Flavobacterium gelatinilyticum sp. nov. (IMCC34777T = KACC 22288 T = NBRC 114944 T), Flavobacterium aquiphilum sp. nov. (IMCC34779T = KACC 22289 T = NBRC 114945 T), Flavobacterium limnophilum sp. nov. (IMCC36791T = KACC 22290 T = NBRC 114947 T), Flavobacterium lacustre sp. nov. (IMCC36792T = KACC 22291 T = NBRC 114948 T), and Flavobacterium eburneipallidum sp. nov. (IMCC36793T = KACC 22292 T = NBRC 114949 T) are proposed as novel species.
Collapse
Affiliation(s)
- Hyunyoung Jo
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Miri S Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yeonjung Lim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
7
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
8
|
Son Y, Min J, Park W. Chryseobacterium faecale sp. nov., isolated from camel feces. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain F4T (=KACC 22401T=JCM 34836T), a novel Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterium, was isolated from camel (Camelus bactrianus) faeces. The newly identified bacterial strain F4T was grown in Reasoner's 2A medium [0–2 % (w/v) NaCl (optimum, 0 %), pH 7.0–8.0 (optimum, pH 7.0), and 18–40 °C (optimum, 30 °C)]. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that strain F4T belonged to the genus
Chryseobacterium
, with its closest neighbours being
Chryseobacterium haifense
DSM 19056T (98.0 %),
Chryseobacterium anthropi
CCUG 52764T (97.3 %), Chryseobacterium montana WG4T (95.7 %) and Chryseobacterium koreensis Chj70T (94.7 %). Complete genome sequence of strain F4T was obtained using a hybrid assembly pipeline integrating sequences obtained using both the Oxford Nanopore and Illumina platforms. Genomic comparisons of strain F4T with type species in the genus
Chryseobacterium
were conducted using digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity, resulting in values of ≤20.5, ≤77.9 and ≤80.8 %, respectively. The genomic DNA G+C content of type strain F4T was 39.7 mol%. The major fatty acids of the strain F4T were anteiso-C15 : 0 and iso-C18 : 3, and MK-6 was its major respiratory quinone. Moreover, the major polar lipid of strain F4T was phosphatidylethanolamine. The genome of strain F4T harbours only one antibiotic resistance gene (blaCME-1) encoding a β-lactamase, which attributes β-lactam antibiotic resistance. Based on the results of our chemotaxonomic, genotypic and phenotype analyses, strain F4T is identified as a novel species of the genus
Chryseobacterium
, for which the name Chryseobacterium faecale sp. nov. is proposed.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|