1
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
2
|
Leduc L, Costa M, Leclère M. The Microbiota and Equine Asthma: An Integrative View of the Gut-Lung Axis. Animals (Basel) 2024; 14:253. [PMID: 38254421 PMCID: PMC10812655 DOI: 10.3390/ani14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Both microbe-microbe and host-microbe interactions can have effects beyond the local environment and influence immunological responses in remote organs such as the lungs. The crosstalk between the gut and the lungs, which is supported by complex connections and intricate pathways, is defined as the gut-lung axis. This review aimed to report on the potential role of the gut-lung gut-lung axis in the development and persistence of equine asthma. We summarized significant determinants in the development of asthma in horses and humans. The article discusses the gut-lung axis and proposes an integrative view of the relationship between gut microbiota and asthma. It also explores therapies for modulating the gut microbiota in horses with asthma. Improving our understanding of the horse gut-lung axis could lead to the development of techniques such as fecal microbiota transplants, probiotics, or prebiotics to manipulate the gut microbiota specifically for improving the management of asthma in horses.
Collapse
Affiliation(s)
- Laurence Leduc
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marcio Costa
- Veterinary Department of Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mathilde Leclère
- Clinical Sciences Department, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
3
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
4
|
Weinert-Nelson JR, Biddle AS, Sampath H, Williams CA. Fecal Microbiota, Forage Nutrients, and Metabolic Responses of Horses Grazing Warm- and Cool-Season Grass Pastures. Animals (Basel) 2023; 13:ani13050790. [PMID: 36899650 PMCID: PMC10000167 DOI: 10.3390/ani13050790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Integrating warm-season grasses into cool-season equine grazing systems can increase pasture availability during summer months. The objective of this study was to evaluate effects of this management strategy on the fecal microbiome and relationships between fecal microbiota, forage nutrients, and metabolic responses of grazing horses. Fecal samples were collected from 8 mares after grazing cool-season pasture in spring, warm-season pasture in summer, and cool-season pasture in fall as well as after adaptation to standardized hay diets prior to spring grazing and at the end of the grazing season. Random forest classification was able to predict forage type based on microbial composition (accuracy: 0.90 ± 0.09); regression predicted forage crude protein (CP) and non-structural carbohydrate (NSC) concentrations (p < 0.0001). Akkermansia and Clostridium butyricum were enriched in horses grazing warm-season pasture and were positively correlated with CP and negatively with NSC; Clostridum butyricum was negatively correlated with peak plasma glucose concentrations following oral sugar tests (p ≤ 0.05). These results indicate that distinct shifts in the equine fecal microbiota occur in response different forages. Based on relationships identified between the microbiota, forage nutrients, and metabolic responses, further research should focus on the roles of Akkermansia spp. and Clostridium butyricum within the equine hindgut.
Collapse
Affiliation(s)
- Jennifer R. Weinert-Nelson
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Amy S. Biddle
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19711, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Carey A. Williams
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
5
|
Wen X, Luo S, Lv D, Jia C, Zhou X, Zhai Q, Xi L, Yang C. Variations in the fecal microbiota and their functions of Thoroughbred, Mongolian, and Hybrid horses. Front Vet Sci 2022; 9:920080. [PMID: 35968025 PMCID: PMC9366519 DOI: 10.3389/fvets.2022.920080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
The horse gut is colonized by a rich and complex microbial community that has important roles in horse physiology, metabolism, nutrition, and immune functions. Fewer across-breed variations in horse gut microbial diversity have been illustrated. In this article, the gut microbiota of Thoroughbred, Mongolian, and Hybrid horses [first filial generation (F1) of Mongolian (maternal) and Thoroughbred (paternal)] were studied by second-generation high-throughput sequencing technology. Differences in gut microbiota composition and function between breeds were determined using diversity and functional prediction analysis. The alpha diversity analysis showed that Thoroughbred horses had a more abundant and diverse gut microbiota, while the diversity of gut microbiota in Hybrid horses was intermediate between Thoroughbred and Mongolian horses. Subsequent cluster analysis showed that Hybrid horses have a microbiota composition more similar to Mongolian horses. LEfSe analysis revealed that the bacterial biomarkers for Thoroughbred horses at the family level were Prevotellaceae, Rikenellaceae, Fibrobacteraceae, p_251_o5, Lactobacillaceae, and uncultured_bacterium_o_WCHB1_41; the bacterial biomarker for Mongolian horses was Planococcaceae; and the bacterial biomarkers for Hybrid horses were Moraxellaceae, Enterobacteriaceae, and Ruminococcaceae. The functional prediction results indicated that the metabolic pathways differ significantly between the breeds. Regarding metabolism, the Hybrid horses had the lowest proportion of the carbohydrate metabolic pathways, while the energy metabolic pathway had the highest proportion. The abundance ratios of the remaining eight metabolic pathways in Hybrid horses were between Thoroughbred and Mongolian horses. In conclusion, the results of this study showed an association between horse breeds and gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Wen
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shengjun Luo
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dianhong Lv
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunling Jia
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiurong Zhou
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Zhai
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Xi
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- *Correspondence: Li Xi
| | - Caijuan Yang
- National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
- Caijuan Yang
| |
Collapse
|
6
|
Henriksen IW, Mejia JLC, Mentzel CMJ, Lindenberg F, Hansen AK. Oligosaccharide equine feed supplement, Immulix, has minor impact on vaccine responses in mice. Sci Rep 2022; 12:582. [PMID: 35022427 PMCID: PMC8755741 DOI: 10.1038/s41598-021-04132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Several mammalian species are vaccinated in early life, but little is known about the effect of diet on vaccine response. Oligosaccharides are increasingly proposed as dietary supplement for young individuals due to their anti-inflammatory potential elicited through modulation of gut microbiota (GM). Also, diet, e.g. the size of the fat fraction, is known to modulate the GM. We tested if an oligosaccharide diet (Immulix) and/or increased dietary fat content affected antibody titers to a tetanus vaccine in 48 BALB/cJTac mice through GM modulation. Female mice had significantly higher IgG titers with higher variation compared to male mice. The effects of Immulix and/or increased fat content were minor. Immulix negatively affected IgG titers in male mice four weeks after secondary vaccination but upregulated Il1b gene expression in the spleen. Immulix had a downregulating effect on expression of Cd4 and Foxp3 in ileum only if the mice were fed the diet with increased fat. The diet with increased dietary fat increased Il1b but decreased Cd8a gene expression in the spleen. Immulix and diet affected GM composition significantly. Increased dietary fat content upregulated Lactobacillus animalis but downregulated an unclassified Prevotella spp. Immulix decreased Lactobacillales, Streptococcaceae and Prevotellaceae but increased Bacteroides. It is concluded that in spite of some minor influences on immune cell markers, cytokines and IgG titers Immulix feeding or increased dietary fat content did not have any biologically relevant effects on tetanus vaccine responses in this experiment in mice.
Collapse
Affiliation(s)
- Ida Wang Henriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
- Brogaarden Aps, Lynge, Denmark.
| | | | | | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| |
Collapse
|