1
|
Zhang M, Yang W, Liu N, Tu J, Lin J, Dong G, Zhao D, Sheng C. Lanosterol 14α-Demethylase (CYP51)/Heat Shock Protein 90 (Hsp90) Dual Inhibitors for the Treatment of Invasive Candidiasis. J Med Chem 2025. [PMID: 39754582 DOI: 10.1021/acs.jmedchem.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism. Among them, dual inhibitor MM4 exhibited potent in vitro and in vivo antifungal activity against Candida albicans and effectively inhibited important fungal virulence factors (e.g., hyphae, biofilm). Therefore, CYP51/Hsp90 dual inhibitors show great promise in the development of novel antifungal drugs to combat invasive candidiasis.
Collapse
Affiliation(s)
- Mingming Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jingsheng Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
2
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Niño-Vega GA, Padró-Villegas L, López-Romero E. New Ground in Antifungal Discovery and Therapy for Invasive Fungal Infections: Innovations, Challenges, and Future Directions. J Fungi (Basel) 2024; 10:871. [PMID: 39728367 DOI: 10.3390/jof10120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
This review explores current advancements and challenges in antifungal therapies amid rising fungal infections, particularly in immunocompromised patients. We detail the limitations of existing antifungal classes-azoles, echinocandins, polyenes, and flucytosine-in managing systemic infections and the urgent need for alternative solutions. With the increasing incidence of resistance pathogens, such as Candida auris and Aspergillus fumigatus, we assess emerging antifungal agents, including Ibrexafungerp, T-2307, and N'-Phenylhydrazides, which target diverse fungal cell mechanisms. Innovations, such as nanoparticles, drug repurposing, and natural products, are also evaluated for their potential to improve efficacy and reduce resistance. We emphasize the importance of novel approaches to address the growing threat posed by fungal infections, particularly for patients with limited treatment options. Finally, we briefly examine the potential use of artificial intelligence (AI) in the development of new antifungal treatments, diagnoses, and resistance prediction, which provides powerful tools in the fight against fungal pathogens. Overall, we highlight the pressing need for continued research to advance antifungal treatments and improve outcomes for high-risk populations.
Collapse
Affiliation(s)
- Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico
| | - Leonardo Padró-Villegas
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato C.P. 36050, Mexico
| |
Collapse
|
4
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
5
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
6
|
Kaur A, Sharma K, Sharma N, Aggarwal G. An Insight into the Repurposing of Phytoconstituents obtained from Delhi's Aravalli Biodiversity Park as Antifungal Agents. Infect Disord Drug Targets 2024; 24:e020224226666. [PMID: 38305295 DOI: 10.2174/0118715265282411240119061441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The global prevalence of fungal infections is alarming in both the pre- and post- COVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-α- demethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Delhi Pharmaceutical Sciences and Research University, M.B. Road, Sector III, Pushp Vihar, New Delhi, 110017, India
| | - Kalicharan Sharma
- Delhi Pharmaceutical Sciences and Research University, M.B. Road, Sector III, Pushp Vihar, New Delhi, 110017, India
| | - Neetika Sharma
- Delhi Pharmaceutical Sciences and Research University, M.B. Road, Sector III, Pushp Vihar, New Delhi, 110017, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, M.B. Road, Sector III, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
7
|
Cheng J, Yin X, Wang L, Liu X, Yang F, Zhang L, Liu T. Decoding molecular mechanism of species-selective targeting of fungal versus human HSP90 using multiple replica molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 42:12478-12488. [PMID: 37850420 DOI: 10.1080/07391102.2023.2270687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
As a highly evolutionarily conserved molecular chaperone, heat shock protein (HSP90), plays an important role in virulence traits, representing a therapeutic target for the treatment of fungal infections. The close evolutionary relationship between fungi and their human hosts poses a key challenge for the development of selective antifungal agents. In this work, molecular docking, multiple replica microsecond-based molecular dynamics (MD) simulations, and binding free energy calculations were performed to decode molecular mechanism of species-selective targeting of fungal versus human HSP90 triggered by the compound A11. MD simulations reveal that binding of compound A11 to human HSP90 nucleotide-binding domain (NBD) leads to obvious conformational changes relative to fungal HSP90 NBD. Binding free energy calculations show that the binding of compound A11 to fungal HSP90 NBD is stronger than that to human HSP90 NBD. Per residue-based free energy decomposition analysis was used to evaluate the inhibitor - residue interaction profile. The results efficiently identify the hot spot residues that play vital roles in favorable binding of compound A11 to fungal HSP90 NBD. This study is expected to provide a useful guidance for the development of selective inhibitors toward fungal HSP90.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jinying Cheng
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xue Yin
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fang Yang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
8
|
Sardana K, Sharath S, Khurana A, Ghosh S. An update on the myriad antifungal resistance mechanisms in dermatophytes and the place of experimental and existential therapeutic agents for Trichophyton complex implicated in tinea corporis and cruris. Expert Rev Anti Infect Ther 2023; 21:977-991. [PMID: 37606343 DOI: 10.1080/14787210.2023.2250555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION There is an epidemic emergence of increased resistance in dermatophytes with to antifungal drugs with ergosterol1 (Erg1) and Erg11 mutations to terbinafine and azoles. Apart from mutations, mechanisms that predict clinical failure include efflux pumps, cellular kinases, heat shock proteins (Hsp), and biofilms. Apart from itraconazole and SUBATM (Super-Bioavailable) itraconazole, measures that can be used in terbinafine failure include efflux-pump inhibitors, Hsp inhibitors and judicious use of antifungal drugs (topical + systemic) combinations. AREAS COVERED A PubMed search was done for the relevant studies and reviews published in the last 22 years using keywords dermatophytes OR Trichophyton, anti-fungal, resistance, mechanism and fungal AND resistance mechanisms. Our aim was to look for literature on prevalent species and we specifically researched studies on Trichophyton genus. We have analyzed varied antifungal drug mechanisms and detailed varied experimental and approved drugs to treat recalcitrant dermatophytosis. EXPERT OPINION Apart from administering drugs with low minimum inhibitory concentration, combinations of oral and topical antifungals (based on synergy data) and new formulations of existing drugs are useful in recalcitrant cases. There is a need for research into resistance mechanism of the existent Trichophyton strains in therapeutic failures in tinea corporis & cruris instead of data derived from laboratory strains which may not mirror clinical failures.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Savitha Sharath
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Shamik Ghosh
- Rejuvenation Technologies Inc, Harvard Medical School, New York City, NY, USA
| |
Collapse
|
9
|
Liu N, Tu J, Huang Y, Yang W, Wang Q, Li Z, Sheng C. Target- and prodrug-based design for fungal diseases and cancer-associated fungal infections. Adv Drug Deliv Rev 2023; 197:114819. [PMID: 37024014 DOI: 10.1016/j.addr.2023.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.
Collapse
|
10
|
Wang T, Yang W, Liu Y, Li W, Wang Y, Liu N, Sheng C. Jumonji Histone Demethylase Inhibitor JIB-04 as a Broad-Spectrum Antifungal Agent. ACS Infect Dis 2022; 8:1316-1323. [PMID: 35695031 DOI: 10.1021/acsinfecdis.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive fungal infections are emerging as a global public health problem. The lack of effective antifungal drugs is the bottleneck of clinical antifungal treatment. To identify novel antifungal agents with new mechanisms of action, JIB-04, a Jumonji histone demethylase inhibitor, was identified to possess broad-spectrum antifungal activity by a cell-based screen. Particularly, JIB-04 effectively inhibited Jumonji demethylase activity and ergosterol biosynthesis of Cryptococcus neoformans cells, leading to in vitro and in vivo anti-Cryptococcus activity. It also significantly inhibited the virulence factors of C. neoformans including biofilm, melanin, capsule, and surface hydrophobicity. Thus, JIB-04 was validated as a potent antifungal agent for the treatment of cryptococcal meningitis and Jumonji histone demethylase was preliminarily identified as a potential target for the development of novel antifungal therapeutics.
Collapse
Affiliation(s)
- Tianyou Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.,Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wang Li
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
12
|
Yin W, Wu T, Liu L, Jiang H, Zhang Y, Cui H, Sun Y, Qin Q, Sun Y, Gao Z, Zhao L, Su X, Zhao D, Cheng M. Species-Selective Targeting of Fungal Hsp90: Design, Synthesis, and Evaluation of Novel 4,5-Diarylisoxazole Derivatives for the Combination Treatment of Azole-Resistant Candidiasis. J Med Chem 2022; 65:5539-5564. [PMID: 35298171 DOI: 10.1021/acs.jmedchem.1c01991] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive fungal infections are emerging as serious infectious diseases worldwide. Because of the development of antifungal drug resistance, the limited efficacy of the existing drugs has led to high mortality in patients. The use of the essential eukaryotic chaperone Hsp90, which plays a multifaceted role in drug resistance across diverse pathogenic fungal species, is considered to be a new strategy to mitigate the resistance and counter the threat posed by drug-resistant fungi. Thus, a series of 4,5-diarylisoxazole analogues as fungal Hsp90 inhibitors were designed and synthesized that had potent synergistic effects with fluconazole in vitro and in vivo. In particular, compound A17 could avoid the potential mammalian toxicity of Hsp90 inhibitors based on key reside differences between humans and fungi. These data support the feasibility of targeting fungal Hsp90 as a promising antifungal strategy and further development of compound A17 as a valuable research probe for the investigation of fungal Hsp90.
Collapse
Affiliation(s)
- Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lei Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hong Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuxin Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hengxian Cui
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Liyu Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xin Su
- The School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
13
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
14
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Li C, Tu J, Han G, Liu N, Sheng C. Heat shock protein 90 (Hsp90)/Histone deacetylase (HDAC) dual inhibitors for the treatment of azoles-resistant Candida albicans. Eur J Med Chem 2022; 227:113961. [PMID: 34742014 DOI: 10.1016/j.ejmech.2021.113961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Clinical treatment of candidiasis has suffered from increasingly severe drug resistance and limited efficacy. Thus, novel strategies to deal with drug resistance are highly desired to develop effective therapeutic agents. Herein, dual inhibition of heat shock protein 90 (Hsp90) and histone deacetylase (HDAC) was validated as a new strategy to potentiate efficacy of fluconazole against resistant Candida albicans infections. The first generation of Hsp90/HDAC dual inhibitors were designed as synergistic enhancers to treat azoles-resistant candidiasis. In particular, compound J5 exhibited fungal-selective inhibitory effects on Hsp90 and HDACs, leading to low toxicity and excellent in vitro (FICI = 0.266) and in vivo synergistic antifungal potency to treat fluconazole resistant candidiasis. Antifungal-mechanistic investigation revealed that compound J5 suppressed important virulence factors and down-regulated expression of resistance-associated genes. Therefore, Hsp90/HDAC dual inhibitors represent a new strategy for the development of novel antifungal therapeutics to combat azole-resistant candidiasis.
Collapse
Affiliation(s)
- Chaochen Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
16
|
Pandey M, Singh M, Wasnik K, Gupta S, Patra S, Gupta PS, Pareek D, Chaitanya NSN, Maity S, Reddy ABM, Tilak R, Paik P. Targeted and Enhanced Antimicrobial Inhibition of Mesoporous ZnO-Ag 2O/Ag, ZnO-CuO, and ZnO-SnO 2 Composite Nanoparticles. ACS OMEGA 2021; 6:31615-31631. [PMID: 34869986 PMCID: PMC8637601 DOI: 10.1021/acsomega.1c04139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
In this work, mesoporous (pore size below 4 nm) composite nanoparticles of ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 of size d ≤ 10 nm (dia.) have been synthesized through the in situ solvochemical reduction method using NaBH4. These composite nanoparticles exhibited excellent killing efficacy against Gram-positive/negative bacterial and fungal strains even at a very low dose of 0.010 μg/mL. Additionally, by applying the in silico docking approach, the nanoparticles and microorganism-specific targeted proteins and their interactions have been identified to explain the best anti-bacterial/anti-fungal activities of these composites. For this purpose, the virulence and resistance causing target proteins such as PqsR, RstA, FosA, and Hsp90 of Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Candida albicans have been identified to find out the best inhibitory action mechanisms involved. From the in vitro study, it is revealed that all the composite nanoparticle types used here can act as potent antimicrobial components. All the composite nanoparticles have exhibited excellent inhibition against the microorganisms compared to their constituent single metal or metal oxide nanoparticles. Among the nanoparticle types, the ZnO-Ag2O/Ag composite nanoparticles exhibited the best inhibition activity compared to the other reported nanoparticles. The microorganisms which are associated with severe infections lead to the multidrug resistance and have become a huge concern in the healthcare sector. Conventional organic antibiotics are less stable at a higher temperature. Therefore, based on the current demands, this work has been focused on designing inorganic antibiotics which possess stability even under harsh conditions. In this direction, our developed composite nanoparticles were explored for potential uses in the healthcare technology, and they may solve many problems in global emergency and epidemics caused by the microorganisms.
Collapse
Affiliation(s)
- Monica Pandey
- School
of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Monika Singh
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Kirti Wasnik
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shubhra Gupta
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sukanya Patra
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prem Shankar Gupta
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Divya Pareek
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Nyshadham Sai Naga Chaitanya
- Department
of Animal Science, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Somedutta Maity
- School
of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Aramati B. M. Reddy
- Department
of Animal Science, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Ragini Tilak
- Institute
of Medical Sciences, Banaras Hindu University
(BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pradip Paik
- School
of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005, India
- ,
| |
Collapse
|