1
|
Robinson LR, McDevitt CJ, Regan MR, Quail SL, Wadsworth CB. In vitro evolution of ciprofloxacin resistance in Neisseria commensals and derived mutation population dynamics in natural Neisseria populations. FEMS Microbiol Lett 2025; 372:fnae107. [PMID: 39788725 PMCID: PMC11774118 DOI: 10.1093/femsle/fnae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging four replicates of four different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing. Ten out of sixteen selected cells lines across the four species evolved ciprofloxacin resistance (≥1 ug/ml); with resistance-contributing mutations primarily emerging in DNA gyrase subunit A and B (gyrA and gyrB), topoisomerase IV subunits C and E (parC and parE), and the multiple transferable efflux pump repressor (mtrR). Of note, these derived mutations appeared in the same loci responsible for ciprofloxacin-reduced susceptibility in the pathogenic Neisseria, suggesting conserved mechanisms of resistance across the genus. Additionally, we tested for zoliflodacin cross-resistance in evolved strain lines and found 6 lineages with elevated zoliflodacin minimum inhibitory concentrations. Finally, to interrogate the likelihood of experimentally derived mutations emerging and contributing to resistance in natural Neisseria, we used a population-based approach and identified GyrA 91I as a substitution circulating within commensal Neisseria populations and ParC 85C in a single gonococcal isolate. A small cluster of gonococcal isolates shared commensal alleles at parE, suggesting recent cross-species recombination events.
Collapse
Affiliation(s)
- Leah R Robinson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Caroline J McDevitt
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Molly R Regan
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Sophie L Quail
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Crista B Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| |
Collapse
|
2
|
Djusse ME, Gaspari V, Morselli S, Rapparini L, Foschi C, Ambretti S, Lazzarotto T, Piraccini BM, Marangoni A. Antimicrobial resistance determinants in the oropharyngeal microbiome of 'men having sex with men' attending an sexually transmitted infection clinic. Int J STD AIDS 2024; 35:803-807. [PMID: 38760931 DOI: 10.1177/09564624241255163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
BACKGROUND 'Men having sex with men' (MSM) represent a key population with a significant prevalence of pharyngeal Neisseria gonorrhoeae (NG) infections and a high rate of antimicrobial resistance genes in the pharyngeal microbiome. As NG can acquire antibiotic resistance genes from other commensal oropharyngeal bacteria, monitoring the prevalence of these resistance determinants is critical to curtail the spread of NG-resistant strains. PURPOSE AND RESEARCH DESIGN Here, we assessed the distribution of five resistance genes (pen (A), mtr (R), gyr (A), par (C), msr (D)) in the oropharynx of 164 MSM, attending an Outpatient clinic for STI screening. RESULTS The most frequently detected resistance gene was msr (D) (88.4%), followed by gyr (A) (67.1%). The distribution of resistance genes was not influenced by pharyngeal gonorrhea nor by the HIV status, whereas a younger age was associated with mtr (R) presence (p = .008). Subjects using mouthwash exhibited significantly lower levels of mtr (R) (p = .0005). Smoking habit was associated with a higher prevalence of par (C) (p = .02). A noteworthy association was observed between the presence of msr (D) gene and the use of antibiotics (p = .014). CONCLUSIONS Our findings reveal an enrichment of antimicrobial resistance genes in the oropharynx of MSM. These insights could aid in the development of screening programs and antimicrobial stewardship initiatives targeting populations at heightened risk of pharyngeal gonorrhea.
Collapse
Affiliation(s)
- Marielle Ezekielle Djusse
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Valeria Gaspari
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Morselli
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Rapparini
- Section of Dermatology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ambretti
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Dermatology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Robinson LR, McDevitt CJ, Regan MR, Quail SL, Wadsworth CB. In vitro evolution of ciprofloxacin resistance in Neisseria commensals and derived mutation population dynamics in natural Neisseria populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603762. [PMID: 39071422 PMCID: PMC11275933 DOI: 10.1101/2024.07.16.603762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging 4 replicates of 4 different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing. 10/16 selected cells lines across the 4 species evolved ciprofloxacin resistance (≥ 1 ug/ml); with resistance-contributing mutations primarily emerging in DNA gyrase subunit A and B (gyrA and gyrB), topoisomerase IV subunits C and E (parC and parE), and the multiple transferable efflux pump repressor (mtrR). Of note, these derived mutations appeared in the same loci responsible for ciprofloxacin reduced susceptibility in the pathogenic Neisseria, suggesting conserved mechanisms of resistance across the genus. Additionally, we tested for zoliflodacin cross-resistance in evolved strain lines and found 6 lineages with elevated zoliflodacin minimum inhibitory concentrations. Finally, to interrogate the likelihood of experimentally derived mutations emerging and contributing to resistance in natural Neisseria, we used a population-based approach and identified GyrA 91I as a substitution circulating within commensal Neisseria populations and ParC 85C in a single gonococcal isolate. Small clusters of gonococcal isolates had commensal-like alleles at parC and parE, indicating recent cross-species recombination events.
Collapse
Affiliation(s)
- Leah R. Robinson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Caroline J. McDevitt
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Molly R. Regan
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sophie L. Quail
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
4
|
Vitiello A, Ferrara F, Boccellino M, Ponzo A, Sabbatucci M, Zovi A. Antimicrobial Resistance in Gonorrhea. Microb Drug Resist 2024; 30:297-303. [PMID: 38579162 DOI: 10.1089/mdr.2023.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial resistance is a global public health emergency. The World Health Organization recently highlighted the growing number of new sexually transmitted infections such as gonorrhea, syphilis, and Chlamydia, which are resistant to common antibiotics. The phenomenon is also on the rise due to increasing intercontinental travel. Emerging antibiotic-resistant strains of gonorrhea are particularly associated with international spread from Southeast Asian travelers. Infection with Neisseria gonorrhoeae can cause a wide spectrum of associated diseases such as dermatitis, arthritis and septic arthritis, and pelvic inflammatory disease, and can even lead to serious health consequences for the individual. Natural infection confers no immunity, and vaccination is not available currently, although in several countries, it has been reported that the antimeningococcal vaccine may protect against gonorrhea. Implementing all necessary preventive measures is crucial, as well as appropriate and timely diagnostic methods and effective antimicrobial therapeutic treatments in the correct modalities to avoid the increase of forms of gonorrhea that are resistant to common antibiotics and difficult to eradicate.
Collapse
Affiliation(s)
| | | | | | - Annarita Ponzo
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | | |
Collapse
|
5
|
Gestels Z, Abdellati S, Kenyon C, Manoharan-Basil SS. Ciprofloxacin Concentrations 100-Fold Lower than the MIC Can Select for Ciprofloxacin Resistance in Neisseria subflava: An In Vitro Study. Antibiotics (Basel) 2024; 13:560. [PMID: 38927226 PMCID: PMC11200666 DOI: 10.3390/antibiotics13060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Neisseria gonorrhoeae can acquire antimicrobial resistance (AMR) through horizontal gene transfer (HGT) from other Neisseria spp. such as commensals like Neisseria subflava. Low doses of antimicrobials in food could select for AMR in N. subflava, which could then be transferred to N. gonorrhoeae. In this study, we aimed to determine the lowest concentration of ciprofloxacin that can induce ciprofloxacin resistance (minimum selection concentration-MSC) in a N. subflava isolate (ID-Co000790/2, a clinical isolate collected from a previous community study conducted at ITM). In this study, Neisseria subflava was serially passaged on gonococcal (GC) medium agar plates containing ciprofloxacin concentrations ranging from 1:100 to 1:10,000 below its ciprofloxacin MIC (0.006 µg/mL) for 6 days. After 6 days of serial passaging at ciprofloxacin concentrations of 1/100th of the MIC, 24 colonies emerged on the plate containing 0.06 µg/mL ciprofloxacin, which corresponds to the EUCAST breakpoint for N. gonorrhoeae. Their ciprofloxacin MICs were between 0.19 to 0.25 µg/mL, and whole genome sequencing revealed a missense mutation T91I in the gyrA gene, which has previously been found to cause reduced susceptibility to fluoroquinolones. The N. subflava MSCde novo was determined to be 0.06 ng/mL (0.00006 µg/mL), which is 100×-fold lower than the ciprofloxacin MIC. The implications of this finding are that the low concentrations of fluoroquinolones found in certain environmental samples, such as soil, river water, and even the food we eat, may be able to select for ciprofloxacin resistance in N. subflava.
Collapse
Affiliation(s)
- Zina Gestels
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
| | - Saïd Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Kenyon
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Sheeba Santhini Manoharan-Basil
- Sexually Transmitted Infections Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.K.); (S.S.M.-B.)
| |
Collapse
|
6
|
Chen X, Zhu Y, Zheng W, Yan S, Li Y, Xie S. Elucidating doxycycline biotransformation mechanism by Chryseobacterium sp. WX1: Multi-omics insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133975. [PMID: 38452667 DOI: 10.1016/j.jhazmat.2024.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Doxycycline (DOX) represents a second-generation tetracycline antibiotic that persists as a challenging-to-degrade contaminant in environmental compartments. Despite its ubiquity, scant literature exists on bacteria proficient in DOX degradation. This study marked a substantial advancement in this field by isolating Chryseobacterium sp. WX1 from an activated sludge enrichment culture, showcasing its unprecedented ability to completely degrade 50 mg/L of DOX within 44 h. Throughout the degradation process, seven biotransformation products were identified, revealing a complex pathway that began with the hydroxylation of DOX, followed by a series of transformations. Employing an integrated multi-omics approach alongside in vitro heterologous expression assays, our study distinctly identified the tetX gene as a critical facilitator of DOX hydroxylation. Proteomic analyses further pinpointed the enzymes postulated to mediate the downstream modifications of DOX hydroxylation derivatives. The elucidated degradation pathway encompassed several key biological processes, such as the microbial transmembrane transport of DOX and its intermediates, the orchestration of enzyme synthesis for transformation, energy metabolism, and other gene-regulated biological directives. This study provides the first insight into the adaptive biotransformation strategies of Chryseobacterium under DOX-induced stress, highlighting the potential applications of this strain to augment DOX removal in wastewater treatment systems containing high concentrations of DOX.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
8
|
Abdellati S, Laumen JGE, de Block T, De Baetselier I, Van Den Bossche D, Van Dijck C, Manoharan-Basil SS, Kenyon C. Gonococcal resistance to zoliflodacin could emerge via transformation from commensal Neisseria species. An in-vitro transformation study. Sci Rep 2024; 14:1179. [PMID: 38216602 PMCID: PMC10786824 DOI: 10.1038/s41598-023-49943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
One of the most promising new treatments for gonorrhoea currently in phase 3 clinical trials is zoliflodacin. Studies have found very little resistance to zoliflodacin in currently circulating N. gonorrhoeae strains, and in-vitro experiments demonstrated that it is difficult to induce resistance. However, zoliflodacin resistance may emerge in commensal Neisseria spp., which could then be transferred to N. gonorrhoeae via transformation. In this study, we investigated this commensal-resistance-pathway hypothesis for zoliflodacin. To induce zoliflodacin resistance, ten wild-type susceptible isolates belonging to 5 Neisseria species were serially passaged for up to 48 h on gonococcal agar plates containing increasing zoliflodacin concentrations. Within 7 to 10 days, all strains except N. lactamica, exhibited MICs of ≥ 4 µg/mL, resulting in MIC increase ranging from 8- to 64-fold. The last passaged strains and their baseline were sequenced. We detected mutations previously reported to cause zoliflodacin resistance in GyrB (D429N and S467N), novel mutations in the quinolone resistance determining region (QRDR) (M464R and T472P) and mutations outside the QRDR at amino acid positions 28 and 29 associated with low level resistance (MIC 2 µg/mL). Genomic DNA from the laboratory evolved zoliflodacin-resistant strains was transformed into the respective baseline wild-type strain, resulting in MICs of ≥ 8 µg/mL in most cases. WGS of transformants with decreased zoliflodacin susceptibility revealed presence of the same zoliflodacin resistance determinants as observed in the donor strains. Two inter-species transformation experiments were conducted to investigate whether zoliflodacin resistance determinants of commensal Neisseria spp. could be acquired by N. gonorrhoeae. N. gonorrhoeae strain WHO P was exposed to (i) pooled genomic DNA from the two resistant N. mucosa strains and (ii) a gyrB amplicon of the resistant N. subflava strain 45/1_8. Transformants of both experiments exhibited an MIC of 2 µg/mL and whole genome analysis revealed uptake of the mutations detected in the donor strains. This is the first in-vitro study to report that zoliflodacin resistance can be induced in commensal Neisseria spp. and subsequently transformed into N. gonorrhoeae.
Collapse
Affiliation(s)
- Saïd Abdellati
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Gyonne Elise Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Tessa de Block
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van Den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, De Baetselier I, de Block T, Van den Bossche D, Vanbaelen T, Kanesaka I, Manoharan-Basil SS, Kenyon C. Antimicrobial susceptibility of commensal Neisseria spp. in parents and their children in Belgium: a cross-sectional survey. FEMS Microbiol Lett 2024; 371:fnae069. [PMID: 39210455 DOI: 10.1093/femsle/fnae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND commensal Neisseria species are part of the oropharyngeal microbiome and play an important role in nitrate reduction and protecting against colonization by pathogenic bacteria. They do, however, also serve as a reservoir of antimicrobial resistance. Little is known about the prevalence of these species in the general population, how this varies by age and how antimicrobial susceptibility varies between species. METHODS we assessed the prevalence and antimicrobial susceptibility of commensal Neisseria species in the parents (n = 38) and children (n = 50) of 35 families in Belgium. RESULTS various commensal Neisseria (n = 5) could be isolated from the participants. Most abundant were N. subflava and N. mucosa. Neisseria subflava was detected in 77 of 88 (87.5%) individuals and N. mucosa in 64 of 88 (72.7%). Neisseria mucosa was more prevalent in children [41/50 (82%)] than parents [23/38 (60.5%); P < .05], while N. bacilliformis was more prevalent in parents [7/36 (19.4%)] than children [2/50 (4%); P < .05]. Neisseria bacilliformis had high ceftriaxone minimum inhibitory concentrations (MICs; median MIC 0.5 mg/l; IQR 0.38-0.75). The ceftriaxone MICs of all Neisseria isolates were higher in the parents than in the children. This could be explained by a higher prevalence of N. bacilliformis in the parents. INTERPRETATION the N. bacilliformis isolates had uniformly high ceftriaxone MICs which warrant further investigation.
Collapse
Affiliation(s)
- Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Izumo Kanesaka
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 3219, Japan
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- University of Cape Town, Cape Town, 42145, South Africa
| |
Collapse
|
10
|
Kenyon C. Commentary: Non-pathogenic Neisseria species of the oropharynx as a reservoir of antimicrobial resistance: a cross-sectional study. Front Cell Infect Microbiol 2024; 13:1343608. [PMID: 38264734 PMCID: PMC10803593 DOI: 10.3389/fcimb.2023.1343608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Affiliation(s)
- Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Walsh L, Clark SA, Derrick JP, Borrow R. Beyond the usual suspects: Reviewing infections caused by typically-commensal Neisseria species. J Infect 2023; 87:479-489. [PMID: 37797844 DOI: 10.1016/j.jinf.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Few data outside of individual case reports are available on non-meningococcal, non-gonococcal species of Neisseria as causative agents of invasive disease. This review collates disease, organism and patient information from case reports on the topic. METHODS A literature search was performed examining articles describing diseases caused by non-meningococcal and non-gonococcal Neisseria. FINDINGS Neisseria present as opportunistic pathogens causing a wide variety of diseases including serious presentations, endocarditis being the most common condition described and N. mucosa the most commonly presenting pathogen overall. Disease may occur in otherwise healthy patients, although risk factors for infection include recent surgery, an immunocompromised state, poor oral health, and intravenous drug use. CONCLUSIONS Commensal Neisseria infections are rare but can present serious invasive diseases. Further research is required to determine why some species cause disease more than others or why some are inclined towards particular manifestations.
Collapse
Affiliation(s)
- Lloyd Walsh
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom.
| | - Stephen A Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| | - Jeremy P Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester M13 9WL, United Kingdom
| |
Collapse
|
12
|
Gaspari V, Djusse ME, Morselli S, Rapparini L, Foschi C, Ambretti S, Lazzarotto T, Piraccini BM, Marangoni A. Non-pathogenic Neisseria species of the oropharynx as a reservoir of antimicrobial resistance: a cross-sectional study. Front Cell Infect Microbiol 2023; 13:1308550. [PMID: 38076458 PMCID: PMC10703147 DOI: 10.3389/fcimb.2023.1308550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Commensal Neisseria species of the oropharynx represent a significant reservoir of antimicrobial resistance determinants that can be transferred to Neisseria gonorrhoeae. This aspect is particularly crucial in 'men having sex with men' (MSM), a key population in which pharyngeal co-colonization by N. gonorrhoeae and non-pathogenic Neisseria species is frequent and associated with the emergence of antimicrobial resistance. Here, we explored the antimicrobial susceptibility of a large panel of non-pathogenic Neisseria species isolated from the oropharynx of two populations: a group of MSM attending a 'sexually transmitted infection' clinic in Bologna (Italy) (n=108) and a group of males representing a 'general population' (n=119). We collected 246 strains, mainly belonging to N. subflava (60%) and N. flavescens (28%) species. Their antimicrobial susceptibility was evaluated assessing the minimum inhibitory concentrations (MICs) for azithromycin, ciprofloxacin, cefotaxime, and ceftriaxone using E-test strips. Overall, commensal Neisseria spp. showed high rates of resistance to azithromycin (90%; median MICs: 4.0 mg/L), and ciprofloxacin (58%; median MICs: 0.12 mg/L), whereas resistance to cephalosporins was far less common (<15%). Neisseria strains from MSM were found to have significantly higher MICs for azithromycin (p=0.0001) and ciprofloxacin (p<0.0001) compared to those from the general population. However, there was no significant difference in cephalosporin MICs between the two groups. The surveillance of the antimicrobial resistance of non-pathogenic Neisseria spp. could be instrumental in predicting the risk of the spread of multi-drug resistant gonorrhea. This information could be an early predictor of an excessive use of antimicrobials, paving the way to innovative screening and prevention policies.
Collapse
Affiliation(s)
- Valeria Gaspari
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marielle Ezekielle Djusse
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Morselli
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luca Rapparini
- Section of Dermatology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ambretti
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Microbiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Dermatology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
14
|
Lv Z, Yin S, Jiang K, Wang W, Luan Y, Wu S, Shi J, Li Z, Ma X, Wang Z, Yan H. The whole-cell proteome shows the characteristics of macrolides-resistant Bordetella pertussis in China linked to the biofilm formation. Arch Microbiol 2023; 205:219. [PMID: 37148370 PMCID: PMC10164027 DOI: 10.1007/s00203-023-03566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
The macrolides-resistant Bordetella pertussis (MR-Bp) isolates in China evolved from the ptxP1/fhaB3 allele and rapidly became predominant, suggestive of an adaptive transmission ability. This was different from the global prevalent ptxP3 strains, in which MR-Bp was rarely reported. The study aimed to determine the underlying mechanism responsible for fitness and resistance in these two strains. We identify proteomic differences between ptxP1/fhaB3 and ptxP3/fhaB1 strains using tandem mass tag (TMT)-based proteomics. We then performed in-depth bioinformatic analysis to determine differentially expressed genes (DEGs), followed by gene ontology (GO), and protein-protein interaction (PPI) network analysis. Further parallel reaction monitoring (PRM) analysis confirmed the expression of four target proteins. Finally, the crystal violet method was used to determine biofilm-forming ability. The results showed that the main significantly different proteins between the two represent isolates were related to biofilm formation. Furthermore, we have confirmed that ptxP1/fhaB3 showed hyperbiofilm formation in comparison with ptxP3/fhaB1. It is suggested that the resistance and adaptability of ptxP1/fhaB3 strains may be related to the formation of biofilm through proteomics. In a word, we determined the significantly different proteins between the ptxP1/fhaB3 and ptxP3/fhaB1 strains through whole-cell proteome, which were related to biofilm formation.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Sha Yin
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Kaichong Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Wei Wang
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Yang Luan
- Xi'an Center for Disease Control and Prevention, 599 Xiying Road, Xi'an, 710054, China
| | - Shuang Wu
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Jianfei Shi
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Zhe Li
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Zengguo Wang
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China.
| | - Hong Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
15
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
16
|
Rowlinson E, Soge OO, Hughes JP, Berzkalns A, Thibault C, Kerani RP, Khosropour CM, Manhart LE, Golden MR, Barbee LA. Prior Exposure to Azithromycin and Azithromycin Resistance Among Persons Diagnosed With Neisseria gonorrhoeae Infection at a Sexual Health Clinic: 2012-2019. Clin Infect Dis 2023; 76:e1270-e1276. [PMID: 36001447 PMCID: PMC10169409 DOI: 10.1093/cid/ciac682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is conflicting evidence on whether prior azithromycin (AZM) exposure is associated with reduced susceptibility to AZM (AZMRS) among persons infected with Neisseria gonorrhoeae (NG). METHODS The study population included Public Health-Seattle and King County Sexual Health Clinic (SHC) patients with culture-positive NG infection at ≥1 anatomic site whose isolates were tested for AZM susceptibility in 2012-2019. We used multivariate logistic regression to examine the association of time since last AZM prescription from the SHC in ≤12 months with subsequent diagnosis with AZMRS NG (minimum inhibitory concentration [MIC], ≥2.0 µg/mL) and used linear regression to assess the association between the number of AZM prescriptions in ≤12 months and AZM MIC level, controlling for demographic, behavioral, and clinical characteristics. RESULTS A total of 2155 unique patients had 2828 incident NG infections, 156 (6%) of which were caused by AZMRS NG. AZMRS NG was strongly associated with receipt of AZM from the SHC in the prior 29 days (adjusted odds ratio, 6.76; 95% confidence interval [CI], 1.76 to 25.90) but not with receipt of AZM in the prior 30-365 days. Log AZM MIC level was not associated with the number of AZM prescriptions within ≤12 months (adjusted correlation, 0.0004; 95% CI, -.04 to .037) but was associated with number of prescriptions within <30 days (adjusted coefficient, 0.56; 95% CI, .13 to .98). CONCLUSIONS Recent individual-level AZM treatment is associated with subsequent AZMRS gonococcal infections. The long half-life and persistence of subtherapeutic levels of AZM may result in selection of resistant NG strains in persons with recent AZM use.
Collapse
Affiliation(s)
- Emily Rowlinson
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Olusegun O Soge
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Neisseria Reference Laboratory, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Anna Berzkalns
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Christina Thibault
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Roxanne P Kerani
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Lisa E Manhart
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Matthew R Golden
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| | - Lindley A Barbee
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- HIV/STD Program, Public Health–Seattle and King County, Seattle, Washington, USA
| |
Collapse
|
17
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
18
|
de Block T, González N, Abdellati S, Laumen JGE, Van Dijck C, De Baetselier I, Van den Bossche D, Manoharan-Basil SS, Kenyon C. Successful Intra- but Not Inter-species Recombination of msr(D) in Neisseria subflava. Front Microbiol 2022; 13:855482. [PMID: 35432273 PMCID: PMC9007320 DOI: 10.3389/fmicb.2022.855482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance acquisition via natural transformation is a common process in the Neisseria genus. Transformation has played an important role in the emergence of resistance to many antimicrobials in Neisseria gonorrhoeae and Neisseria meningitidis. In a previous study, we found that currently circulating isolates of Neisseria subflava had acquired an msr(D) gene that has been found to result in macrolide resistance in other bacteria but never found in Neisseria species before. To determine if this resistance mechanism is transferable among Neisseria species, we assessed if we could transform the msr(D) gene into other commensal and pathogenic Neisseria under low dose azithromycin pressure. Intraspecies recombination in commensal N. subflava was confirmed with PCR and resulted in high-level macrolide resistance. Whole-genome sequencing of these transformed strains identified the complete uptake of the msr(D) integration fragment. Sequence analysis showed that a large fragment of DNA (5 and 12 kb) was transferred through a single horizontal gene transfer event. Furthermore, uptake of the msr(D) gene had no apparent fitness cost. Interspecies transformation of msr(D) from N. subflava to N. gonorrhoeae was, however, not successful.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Vanbaelen T, Van Dijck C, Laumen J, Gonzalez N, De Baetselier I, Manoharan-Basil SS, De Block T, Kenyon C. Global epidemiology of antimicrobial resistance in commensal Neisseria species: A systematic review. Int J Med Microbiol 2022; 312:151551. [DOI: 10.1016/j.ijmm.2022.151551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
|
20
|
Manoharan-Basil SS, González N, Laumen JGE, Kenyon C. Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes From Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front Microbiol 2022; 13:793612. [PMID: 35369513 PMCID: PMC8973304 DOI: 10.3389/fmicb.2022.793612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is an important global health concern. The genetically related commensal Neisseria act as a reservoir of resistance genes, and horizontal gene transfer (HGT) has been shown to play an important role in the genesis of resistance to cephalosporins and macrolides in N. gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes gyrA/gyrB and parC/parE responsible for fluoroquinolone resistance. Even though the role of gyrB and parE in quinolone resistance is unclear, the subunits gyrB and parE were included as zoliflodacin, a promising new drug to treat N. gonorrhoeae targets the gyrB subunit. We analyzed a collection of 20,047 isolates; 18,800 N. gonorrhoeae, 1,238 commensal Neisseria spp., and nine Neisseria meningitidis. Comparative genomic analyses identified HGT events in genes, gyrA, gyrB, parC, and parE. Recombination events were predicted in N. gonorrhoeae and Neisseria commensals. Neisseria lactamica, Neisseria macacae, and Neisseria mucosa were identified as likely progenitors of the HGT events in gyrA, gyrB, and parE, respectively.
Collapse
Affiliation(s)
- Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- *Correspondence: Sheeba Santhini Manoharan-Basil,
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Laumen JGE, Abdellati S, Van Dijck C, Martiny D, De Baetselier I, Manoharan-Basil SS, Van den Bossche D, Kenyon C. A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria-A Pilot Study. Antibiotics (Basel) 2022; 11:100. [PMID: 35052976 PMCID: PMC8772996 DOI: 10.3390/antibiotics11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Commensal Neisseria provide a reservoir of resistance genes that can be transferred to the pathogens Neisseria gonorrhoeae and N. meningitidis in the human oropharynx. Surveillance programs are thus needed to monitor resistance in oropharyngeal commensal Neisseria, but currently the isolation and antimicrobial susceptibility testing of these commensals is laborious, complex and expensive. In addition, the posterior oropharyngeal/tonsillar swab, which is commonly used to sample oropharyngeal Neisseria, is poorly tolerated by many individuals. We evaluated an alternative non-invasive method to isolate oropharyngeal commensal Neisseria and to detect decreased susceptibility to azithromycin using selective media (LBVT.SNR) with and without azithromycin (2 µg/mL). In this pilot study, we compared paired posterior oropharyngeal/tonsillar swabs and oral rinse-and-gargle samples from 10 participants and demonstrated that a similar Neisseria species diversity and number of colonies were isolated from both sample types. Moreover, the proportion of Neisseria colonies that had a decreased susceptibility to azithromycin was similar in the rinse samples compared to the swabs. This pilot study has produced encouraging data that a simple protocol of oral rinse-and-gargle and culture on plates selective for commensal Neisseria with and without a target antimicrobial can be used as a surveillance tool to monitor antimicrobial susceptibility in commensal oropharyngeal Neisseria. Larger studies are required to validate these findings.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Saïd Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, 1000 Brussels, Belgium;
- Faculté de Médecine et Pharmacie, Université de Mons, 7000 Mons, Belgium
| | - Irith De Baetselier
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Sheeba Santhini Manoharan-Basil
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
22
|
Laumen JGE, Van Dijck C, Abdellati S, De Baetselier I, Serrano G, Manoharan-Basil SS, Bottieau E, Martiny D, Kenyon C. Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci Rep 2022; 12:9. [PMID: 34997050 PMCID: PMC8741786 DOI: 10.1038/s41598-021-03995-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Non-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Gabriela Serrano
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.,Faculté de Médecine et Pharmacie, Université de Mons, Mons, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|