1
|
Nguyen TKC, Do HDK, Nguyen TLP, Pham TT, Mach BN, Nguyen TC, Pham TL, Katsande PM, Hong HA, Duong HT, Phan AN, Cutting SM, Vu MT, Nguyen VD. Genomic and vaccine preclinical studies reveal a novel mouse-adapted Helicobacter pylori model for the hpEastAsia genotype in Southeast Asia. J Med Microbiol 2024; 73. [PMID: 38235783 DOI: 10.1099/jmm.0.001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.
Collapse
Affiliation(s)
- Thi Kim Cuc Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Lan Phuong Nguyen
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Bao Ngoc Mach
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Chinh Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Thi Lan Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Paidamoyo M Katsande
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huynh Anh Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huu Thai Duong
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Simon M Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Minh Thiet Vu
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
2
|
Shi ZJ, Nayfach S, Pollard KS. Maast: genotyping thousands of microbial strains efficiently. Genome Biol 2023; 24:186. [PMID: 37563669 PMCID: PMC10416524 DOI: 10.1186/s13059-023-03030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Existing single nucleotide polymorphism (SNP) genotyping algorithms do not scale for species with thousands of sequenced strains, nor do they account for conspecific redundancy. Here we present a bioinformatics tool, Maast, which empowers population genetic meta-analysis of microbes at an unrivaled scale. Maast implements a novel algorithm to heuristically identify a minimal set of diverse conspecific genomes, then constructs a reliable SNP panel for each species, and enables rapid and accurate genotyping using a hybrid of whole-genome alignment and k-mer exact matching. We demonstrate Maast's utility by genotyping thousands of Helicobacter pylori strains and tracking SARS-CoV-2 diversification.
Collapse
Affiliation(s)
- Zhou Jason Shi
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, USA
| | - Stephen Nayfach
- Joint Genome Institute, Department of Energy, Walnut Creek, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine S Pollard
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis. J Clin Microbiol 2023; 61:e0080222. [PMID: 36515506 PMCID: PMC9879099 DOI: 10.1128/jcm.00802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.
Collapse
|
4
|
Gros B, Gómez Pérez A, Pleguezuelo M, Serrano Ruiz FJ, de la Mata M, Rodríguez-Perálvarez M. Helicobacter Species and Hepato-Biliary Tract Malignancies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:595. [PMID: 36765552 PMCID: PMC9913828 DOI: 10.3390/cancers15030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter species may cause chronic inflammation of the biliary tract, but its relationship with cancer is controversial. We performed a systematic review and meta-analysis to evaluate the association between Helicobacter species and hepatobiliary tract malignancies. Twenty-six studies (4083 patients) were included in qualitative synthesis, and 18 studies (n = 1895 qualified for meta-analysis. All studies were at high-intermediate risk of bias. Most studies combined several direct microbiological methods, mostly PCR (23 studies), culture (8 studies), and/or CLOtest (5 studies). Different specimens alone or in combination were investigated, most frequently bile (16 studies), serum (7 studies), liver/biliary tissue (8 studies), and gastric tissue (3 studies). Patients with Helicobacter species infection had an increased risk of hepatobiliary tract malignancies (OR = 3.61 [95% CI 2.18-6.00]; p < 0.0001), with high heterogeneity in the analysis (I2 = 61%; p = 0.0003). This effect was consistent when Helicobacter was assessed in bile (OR = 3.57 [95% CI 1.73-7.39]; p = 0.0006), gastric tissue (OR = 42.63 [95% CI 5.25-346.24]; p = 0.0004), liver/biliary tissue (OR = 4.92 [95% CI 1.90-12.76]; p = 0.001) and serum (OR = 1.38 [95% CI 1.00-1.90]; p = 0.05). Heterogeneity was reduced in these sub-analyses (I2 = 0-27%; p = ns), except for liver/biliary tissue (I2 = 57%; p = 0.02). In conclusion, based on low-certainty data, Helicobacter species chronic infection is associated with a tripled risk of hepatobiliary tract malignancy. Prospective studies are required to delineate public health interventions.
Collapse
Affiliation(s)
- Beatriz Gros
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research (IMIBIC), 14004 Córdoba, Spain
| | - Alberto Gómez Pérez
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - María Pleguezuelo
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research (IMIBIC), 14004 Córdoba, Spain
| | - Francisco Javier Serrano Ruiz
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research (IMIBIC), 14004 Córdoba, Spain
| | - Manuel de la Mata
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Department of Gastroenterology and Hepatology, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Maimonides Institute of Biomedical Research (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
5
|
Xu W, Xu L, Xu C. Relationship between Helicobacter pylori infection and gastrointestinal microecology. Front Cell Infect Microbiol 2022; 12:938608. [PMID: 36061875 PMCID: PMC9433739 DOI: 10.3389/fcimb.2022.938608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Helicobacter pylori (H. pylori) infection has exceeded 50% worldwide, and it is considered a high-risk factor for chronic gastritis, peptic ulcer, gastric adenocarcinoma, gastroesophageal reflux disease and functional dyspepsia. H. pylori drug resistance is a common problem worldwide. In recent years, the relationship between H. pylori infection and gastrointestinal microecology has received much attention. H. pylori infection changes the structure and composition of gastrointestinal microflora by regulating the gastrointestinal microecological environment, local pH value, cytokines and antimicrobial peptides, and immune response and then plays a crucial role in the occurrence and development of digestive system tumors, liver metabolism and extragastrointestinal diseases. The quadruple strategy of H. pylori eradication can also aggravate gastrointestinal microflora disorder. However, probiotics can reduce intestinal flora changes and imbalances through different mechanisms, thus enhancing the efficacy of H. pylori eradication therapy and reducing adverse reactions caused by eradication therapy. Therefore, this paper reviews the relationship between H. pylori infection and gastrointestinal microecology and its clinical application, providing a basis for clinical treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chengfu Xu,
| |
Collapse
|
6
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|