1
|
Liu H, Liu T, Chen S, Liu X, Li N, Huang T, Ma B, Liu X, Pan S, Zhang H. Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175722. [PMID: 39187081 DOI: 10.1016/j.scitotenv.2024.175722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The iron (Fe) biogeochemical cycle is critical for abiotic and biological environmental processes that overlap spatially and may compete with each other. The development of modern molecular biology technologies promoted the understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes affect the fate of pollutants in directly or indirectly ways, such as greenhouse gas emissions. In this review, these advances and the environmental implications of the Fe cycle process were discussed, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.
Collapse
Affiliation(s)
- Huan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Lan H, Li K, Cao Q, Liang Q, Lin Y, Jegatheesan V, Yan B, Zhang H, Zhang Y. Hydroxyl radical mediated extracellular degradation of tetracycline under aerobic and anaerobic conditions stimulated by bio-FeS nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135450. [PMID: 39121737 DOI: 10.1016/j.jhazmat.2024.135450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The extracellular degradation of antibiotics facilitated by bio-nanoparticles is significant in the field of waste valorization. Among different bio-nanoparticles, bio-FeS nanoparticles stand out for their convenient and cost-effective synthesis. Nevertheless, there is a lack of understanding regarding the extracellular degradation of pollutants driven by bio-FeS nanoparticles. Hence, this study aimed to investigate the role of bio-FeS nanoparticles in the extracellular degradation of tetracycline under aerobic and anaerobic conditions. The findings demonstrated that bio-FeS nanoparticles generated hydroxyl radical (·OH), which significantly contributes to the degradation of tetracycline in both aerobic and anaerobic environments. The production of ·OH in anaerobic conditions was primarily attributed to the limited formation of FeS2 during the biosynthesis of nanoparticles, which was very different from aerobic conditions. The bio-FeS nanoparticles facilitated extracellular electron transport by promoting electron shuttles and Fe(II)/Fe(III) cycling, resulting in the continuous production of ·OH. The degradation pathways showed differences under aerobic and anaerobic conditions, with intermediates exhibiting higher toxicity and greater cellular damage under aerobic conditions. However, in anaerobic conditions, bio-FeS nanoparticles enabled the successful integration of intracellular and extracellular degradation of tetracycline. This research proposed a new avenue for biocatalysis and environmental remediation.
Collapse
Affiliation(s)
- Huixia Lan
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Ke Li
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiliang Cao
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiaochu Liang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | | | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC 3000, Australia
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410028, China
| | - Heng Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yang Zhang
- Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
3
|
Karavaeva V, Sousa FL. Navigating the archaeal frontier: insights and projections from bioinformatic pipelines. Front Microbiol 2024; 15:1433224. [PMID: 39380680 PMCID: PMC11459464 DOI: 10.3389/fmicb.2024.1433224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Archaea continues to be one of the least investigated domains of life, and in recent years, the advent of metagenomics has led to the discovery of many new lineages at the phylum level. For the majority, only automatic genomic annotations can provide information regarding their metabolic potential and role in the environment. Here, genomic data from 2,978 archaeal genomes was used to perform automatic annotations using bioinformatics tools, alongside synteny analysis. These automatic classifications were done to assess how good these different tools perform in relation to archaeal data. Our study revealed that even with lowered cutoffs, several functional models do not capture the recently discovered archaeal diversity. Moreover, our investigation revealed that a significant portion of archaeal genomes, approximately 42%, remain uncharacterized. In comparison, within 3,235 bacterial genomes, a diverse range of unclassified proteins is obtained, with well-studied organisms like Escherichia coli having a substantially lower proportion of uncharacterized regions, ranging from <5 to 25%, and less studied lineages being comparable to archaea with the range of 35-40% of unclassified regions. Leveraging this analysis, we were able to identify metabolic protein markers, thereby providing insights into the metabolism of the archaea in our dataset. Our findings underscore a substantial gap between automatic classification tools and the comprehensive mapping of archaeal metabolism. Despite advances in computational approaches, a significant portion of archaeal genomes remains unexplored, highlighting the need for extensive experimental validation in this domain, as well as more refined annotation methods. This study contributes to a better understanding of archaeal metabolism and underscores the importance of further research in elucidating the functional potential of archaeal genomes.
Collapse
Affiliation(s)
- Val Karavaeva
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
González E, Vera F, Scott F, Guerrero C, Bolívar JM, Aroca G, Muñoz JÁ, Ladero M, Santos VE. Acidophilic heterotrophs: basic aspects and technological applications. Front Microbiol 2024; 15:1374800. [PMID: 38827148 PMCID: PMC11141062 DOI: 10.3389/fmicb.2024.1374800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Acidophiles comprise a group of microorganisms adapted to live in acidic environments. Despite acidophiles are usually associated with an autotrophic metabolism, more than 80 microorganisms capable of utilizing organic matter have been isolated from natural and man-made environments. The ability to reduce soluble and insoluble iron compounds has been described for many of these species and may be harnessed to develop new or improved mining processes when oxidative bioleaching is ineffective. Similarly, as these microorganisms grow in highly acidic media and the chances of contamination are reduced by the low pH, they may be employed to implement robust fermentation processes. By conducting an extensive literature review, this work presents an updated view of basic aspects and technological applications in biomining, bioremediation, fermentation processes aimed at biopolymers production, microbial electrochemical systems, and the potential use of extremozymes.
Collapse
Affiliation(s)
- Ernesto González
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fernando Vera
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Felipe Scott
- Faculty of Engineering and Applied Sciences, Universidad de Los Andes, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan M. Bolívar
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Germán Aroca
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jesús Ángel Muñoz
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ladero
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria E. Santos
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Li L, Liu Z, Meng D, Liu Y, Liu T, Jiang C, Yin H. Sequence similarity network and protein structure prediction offer insights into the evolution of microbial pathways for ferrous iron oxidation. mSystems 2023; 8:e0072023. [PMID: 37768051 PMCID: PMC10654088 DOI: 10.1128/msystems.00720-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Microbial Fe(II) oxidation is a crucial process that harnesses and converts the energy available in Fe, contributing significantly to global element cycling. However, there are still many aspects of this process that remain unexplored. In this study, we utilized a combination of comparative genomics, sequence similarity network analysis, and artificial intelligence-driven structure modeling methods to address the lack of structural information on Fe(II) oxidation proteins and offer a comprehensive perspective on the evolution of Fe(II) oxidation pathways. Our findings suggest that several microbial Fe(II) oxidation pathways currently known may have originated within classes Gammaproteobacteria and Betaproteobacteria.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Tianbo Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Chengying Jiang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang L, Chen Z, Zhu S, Li S, Wei C. Effects of biochar on anaerobic treatment systems: Some perspectives. BIORESOURCE TECHNOLOGY 2023; 367:128226. [PMID: 36328170 DOI: 10.1016/j.biortech.2022.128226] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Many anaerobic activities involve carbon, nitrogen, iron, and sulfur cycles. As a well-developed porous material with abundant functional groups, pyrolytic biochar has been widely researched in efforts to promote microbial activities. However, the lack of consensus on the biochar mechanism has limited its practical application. This review summarizes the effects of different pyrolysis temperatures, particle sizes, and dosages of biochar on microbial activities and community in Fe(III) reduction, anaerobic digestion, nitrogen removal, and sulfate reduction systems. It was found that biochar could promote anaerobic activities by stimulating electron transfer, alleviating toxicity, and providing suitable habitats for microbes. However, it inhibits microbial activities by releasing heavy metal ions or persistent free radicals and adsorbing signaling molecules. Finding a balance between the promotion and inhibition of biochar is therefore essential. This review provides valuable perspectives on how to achieve efficient and stable use of biochar in anaerobic systems.
Collapse
Affiliation(s)
- Liqiu Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China
| | - Zhuokun Chen
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shugeng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Liang L, Vigderovich H, Sivan O, Hou J, Niu M, Yorshansky O, Zhang T, Bosco-Santos A, Wang F. Iron (oxyhydr)oxides shift the methanogenic community in deep sea methanic sediment - insights from long-term high-pressure incubations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157590. [PMID: 35901888 DOI: 10.1016/j.scitotenv.2022.157590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Intermittent increases of dissolved ferrous iron concentrations have been observed in deep marine methanic sediments which is different from the traditional diagenetic electron acceptor cascade, where iron reduction precedes methanogenesis. Here we aimed to gain insight into the mechanism of iron reduction and the associated microbial processes in deep sea methanic sediment by setting up long-term high-pressure incubation experiments supplemented with ferrihydrite and methane. Continuous iron reduction was observed during the entire incubation period. Intriguingly, ferrihydrite addition shifted the archaeal community from the dominance of hydrogenotrophic methanogens (Methanogenium) to methylotrophic methanogens (Methanococcoides). The enriched samples were then amended with 13C-labeled methane and different iron (oxyhydr)oxides in batch slurries to test the mechanism of iron reduction. Intensive iron reduction was observed, the highest rates with ferrihydrite, followed by hematite and then magnetite, however, no anaerobic oxidation of methane (AOM) was observed in any treatment. Further tests on the enriched slurry showed that the addition of molybdate decreased iron reduction, suggesting a link between iron reduction with sulfur cycling. This was accompanied by the enrichment of microbes capable of dissimilatory sulfate reduction and sulfur/thiosulfate oxidation, which indicates the presence of a cryptic sulfur cycle in the incubation system with the addition of iron (oxyhydr)oxides. Our work suggests that under low sulfate conditions, the presence of iron (oxyhydr)oxides would trigger a cascade of microbial reactions, and iron reduction could link with the microbial sulfur cycle, changing the kinetics of the methanogenesis process in methanic sediment.
Collapse
Affiliation(s)
- Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omer Yorshansky
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Taoliang Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alice Bosco-Santos
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|