1
|
Shangpliang HNJ, Tamang JP. Genome Analysis of Potential Probiotic Levilactobacillus brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi). Probiotics Antimicrob Proteins 2024; 16:1583-1607. [PMID: 37466831 DOI: 10.1007/s12602-023-10125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
2
|
Tlais AZA, Polo A, Granehäll L, Filannino P, Vincentini O, De Battistis F, Di Cagno R, Gobbetti M. Sugar lowering in fermented apple-pear juice orchestrates a promising metabolic answer in the gut microbiome and intestinal integrity. Curr Res Food Sci 2024; 9:100833. [PMID: 39290653 PMCID: PMC11406026 DOI: 10.1016/j.crfs.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Excessive sugar consumption in young people, who are the major consumers of sugary drinks, combined with limited physical activity, is an important determinant of obesity. Despite their natural appeal, fruit juices have a similar sugar content to that of sugary drinks and once metabolized, they may induce the same biological response. This study aimed to verify whether fermentation processes can make juice consumption healthier and whether reduced-sugar juices have a specific impact on intestinal function. We designed a tailored fermentation of apple-pear juices with lactic acid bacteria and yeasts, which resulted in a reduction of sugar content (27-66%) and caloric intake, and an increase in mannitol content. The impact of newly developed apple-pear juices on gut microbiome composition and functionality was evaluated in vitro using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Promising changes were found in the gut microbiota and its metabolic responses and functionality, targeting pathways related to obesity and weight loss (lipopolysaccharide and secondary metabolite biosynthesis, polycyclic aromatic hydrocarbon degradation, and amino sugar and nucleotide sugar metabolism). Additionally, the fermented apple-pear juices positively modulated the intestinal epithelial features. While the simulation of the study simplifies the complex in vivo conditions, it suggests that low-sugar fermented apple-pear juices can elicit targeted responses in the gut ecosystem, contributing to healthier alternatives to traditional fruit juices.
Collapse
Affiliation(s)
- Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100, Bolzano, Italy
- International Center on Food Fermentation, 39100, Bolzano, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100, Bolzano, Italy
- International Center on Food Fermentation, 39100, Bolzano, Italy
| | - Lena Granehäll
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100, Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121, Bari, Italy
- International Center on Food Fermentation, 39100, Bolzano, Italy
| | - Olimpia Vincentini
- U.O Alimentazione, Nutrizione e Salute, Dipartimento Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Francesca De Battistis
- U.O Alimentazione, Nutrizione e Salute, Dipartimento Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161, Roma, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100, Bolzano, Italy
- International Center on Food Fermentation, 39100, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano-Bozen, 39100, Bolzano, Italy
- International Center on Food Fermentation, 39100, Bolzano, Italy
| |
Collapse
|
3
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
4
|
Tejerina MR, Cabana MJ, Enríquez PA, Benítez-Ahrendts MR, Fonseca MI. Bacterial Strains Isolated from Stingless Bee Workers Inhibit the Growth of Apis mellifera Pathogens. Curr Microbiol 2024; 81:106. [PMID: 38418777 DOI: 10.1007/s00284-024-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Apis mellifera bees are an important resource for the local economy of various regions in Argentina and the maintenance of natural ecosystems. In recent years, different alternatives have been investigated to avoid the reduction or loss of colonies caused by pathogens and parasites such as Ascosphaera apis, Aspergillus flavus, and Paenibacillus larvae. We focused on bacterial strains isolated from the intestine of native stingless bees, to elucidate their antagonistic effect on diseases of A. mellifera colonies. For this purpose, worker bees of the species Tetragonisca fiebrigi, Plebeia spp., and Scaptotrigona jujuyensis were captured from the entrance to tree hives and transported to the laboratory, where their intestines were extracted. Twenty bacterial colonies were isolated from the intestines, and those capable of inhibiting enterobacteria in vitro and producing organic acids, proteases, and chitinases were selected. Four genera, Levilactobacillus, Acetobacter, Lactiplantibacillus, and Pantoea, were selected and identified by the molecular marker that codes for the 16S rRNA gene. For inhibition assays, cell suspensions and cell-free suspensions were performed. All treatments showed significant antibacterial effects, in comparison with the controls, against P. larvae and antifungal effects against A. apis and A. flavus. However, the mechanisms by which these bacteria inhibit the growth of these pathogens were not studied.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina.
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Pablo Adrián Enríquez
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | - Marcelo Rafael Benítez-Ahrendts
- Cátedra de Microbiología, Sanidad Apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
- Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina
| | - María Isabel Fonseca
- Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Universidad Nacional de Misiones, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Vasundaradevi R, Sarvajith M, Somashekaraiah R, Gunduraj A, Sreenivasa MY. Antagonistic properties of Lactiplantibacillus plantarum MYSVB1 against Alternaria alternata: a putative probiotic strain isolated from the banyan tree fruit. Front Microbiol 2024; 15:1322758. [PMID: 38404595 PMCID: PMC10885809 DOI: 10.3389/fmicb.2024.1322758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Alternaria alternata, a notorious phytopathogenic fungus, has been documented to infect several plant species, leading to the loss of agricultural commodities and resulting in significant economic losses. Lactic acid bacteria (LAB) hold immense promise as biocontrol candidates. However, the potential of LABs derived from fruits remains largely unexplored. In this study, several LABs were isolated from tropical fruit and assessed for their probiotic and antifungal properties. A total of fifty-five LABs were successfully isolated from seven distinct fruits. Among these, seven isolates showed inhibition to growth of A. alternata. Two strains, isolated from fruits: Ficus benghalensis, and Tinospora cordifolia exhibited promising antifungal properties against A. alternata. Molecular identification confirmed their identities as Lactiplantibacillus plantarum MYSVB1 and MYSVA7, respectively. Both strains showed adaptability to a wide temperature range (10-45°C), and salt concentrations (up to 7%), with optimal growth around 37 °C and high survival rates under simulated gastrointestinal conditions. Among these two strains, Lpb. plantarum MYSVB1 demonstrated significant inhibition (p < 0.01) of the growth of A. alternata. The inhibitory effects of cell-free supernatant (CFS) were strong, with 5% crude CFS sufficient to reduce fungal growth by >70% and complete inhibition by 10% CFS. Moreover, the CFS was inhibitory for both mycelial growth and conidial germination. CFS retained its activity even after long cold storage. The chromatographic analysis identified organic acids in CFS, with succinic acid as the predominant constituent, with lactic acid, and malic acid in descending order. LAB strains isolated from tropical fruits showed promising probiotic and antifungal properties, making them potential candidates for various applications in food and agriculture.
Collapse
Affiliation(s)
| | | | | | | | - M. Y. Sreenivasa
- Applied Mycology Laboratory, Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
6
|
Shehata MG, Alsulami T, El-Aziz NMA, Abd-Rabou HS, El Sohaimy SA, Darwish AMG, Hoppe K, Ali HS, Badr AN. Biopreservative and Anti-Mycotoxigenic Potentials of Lactobacillus paracasei MG847589 and Its Bacteriocin in Soft White Cheese. Toxins (Basel) 2024; 16:93. [PMID: 38393172 PMCID: PMC10891891 DOI: 10.3390/toxins16020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 02/25/2024] Open
Abstract
Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.
Collapse
Affiliation(s)
- Mohamed G. Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 20602, United Arab Emirates
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nourhan M. Abd El-Aziz
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Hagar S. Abd-Rabou
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Sobhy A. El Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism, and Service, South Ural State University, 454080 Chelyabinsk, Russia
| | - Amira M. G. Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Karolina Hoppe
- Chemistry Department, Poznan University of Life Science, ul. Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Hatem S. Ali
- Food Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
7
|
Zhao K, Qiu L, Tao X, Zhang Z, Wei H. Genome Analysis for Cholesterol-Lowing Action and Bacteriocin Production of Lactiplantibacillus plantarum WLPL21 and ZDY04 from Traditional Chinese Fermented Foods. Microorganisms 2024; 12:181. [PMID: 38258009 PMCID: PMC10820322 DOI: 10.3390/microorganisms12010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lactiplantibacillus plantarum, a typical ecological species against pathogens, used due to its bacteriocin yield in fermented foods, was proven to have the capacity to lower cholesterol. In this study, using L. plantarum ATCC8014 as the control, L. plantarum WLPL21 and ZDY04 were probed with whole-genome sequencing to ascertain their potential ability to lower cholesterol and yield bacteriocins, as well as to further evaluate their survival capacity in vitro. Our results showed 386 transport-system genes in both L. plantarum WLPL21 and ZDY04. Correspondingly, the in vitro results showed that L. plantarum WLPL21 and ZDY04 could remove cholesterol at 49.23% and 41.97%, respectively, which is 1.89 and 1.61 times that of L. plantarum ATCC8014. The survival rates of L. plantarum WLPL21 and ZDY04 in 1% H2O2, pH 3.0, and 0.3% bile salt were higher than those of L. plantarum ATCC8014. Our results exhibited a complete gene cluster for bacteriocin production encoded by L. plantarum WLPL21 and ZDY04, including plnJKR, plnPQAB, plnEFI, plnSUVWY, and plnJK; and plnMN, plnPQA and plnEFI, respectively, compared with only plnEF in L. plantarum ATCC8014. The present study suggests that the combination of genomic analysis with in vitro evaluations might be useful for exploring the potential functions of probiotics.
Collapse
Affiliation(s)
- Kui Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (K.Z.); (X.T.); (Z.Z.)
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China;
| | - Xueying Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (K.Z.); (X.T.); (Z.Z.)
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (K.Z.); (X.T.); (Z.Z.)
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (K.Z.); (X.T.); (Z.Z.)
| |
Collapse
|
8
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
9
|
Ariute JC, Coelho-Rocha ND, Dantas CWD, de Vasconcelos LAT, Profeta R, de Jesus Sousa T, de Souza Novaes A, Galotti B, Gomes LG, Gimenez EGT, Diniz C, Dias MV, de Jesus LCL, Jaiswal AK, Tiwari S, Carvalho R, Benko-Iseppon AM, Brenig B, Azevedo V, Barh D, Martins FS, Aburjaile F. Probiogenomics of Leuconostoc Mesenteroides Strains F-21 and F-22 Isolated from Human Breast Milk Reveal Beneficial Properties. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10170-7. [PMID: 37804433 DOI: 10.1007/s12602-023-10170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Bacteria of the Leuconostoc genus are Gram-positive bacteria that are commonly found in raw milk and persist in fermented dairy products and plant food. Studies have already explored the probiotic potential of L. mesenteroides, but not from a probiogenomic perspective, which aims to explore the molecular features responsible for their phenotypes. In the present work, probiogenomic approaches were applied in strains F-21 and F-22 of L. mesenteroides isolated from human milk to assess their biosafety at the molecular level and to correlate molecular features with their potential probiotic characteristics. The complete genome of strain F-22 is 1.99 Mb and presents one plasmid, while the draft genome of strain F-21 is 1.89 Mb and presents four plasmids. A high percentage of average nucleotide identity among other genomes of L. mesenteroides (≥ 96%) corroborated the previous taxonomic classification of these isolates. Genomic regions that influence the probiotic properties were identified and annotated. Both strains exhibited wide genome plasticity, cell adhesion ability, proteolytic activity, proinflammatory and immunomodulation capacity through interaction with TLR-NF-κB and TLR-MAPK pathway components, and no antimicrobial resistance, denoting their potential to be candidate probiotics. Further, the strains showed bacteriocin production potential and the presence of acid, thermal, osmotic, and bile salt resistance genes, indicating their ability to survive under gastrointestinal stress. Taken together, our results suggest that L. mesenteroides F-21 and F-22 are promising candidates for probiotics in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Carlos Ariute
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Nina Dias Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carlos Willian Dias Dantas
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Larissa Amorim Tourinho de Vasconcelos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Thiago de Jesus Sousa
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ane de Souza Novaes
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruno Galotti
- Laboratory of Biotherapeutic Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Lucas Gabriel Gomes
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Enrico Giovanelli Toccani Gimenez
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carlos Diniz
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana Vieira Dias
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sandeep Tiwari
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40231-300, Brazil
| | - Rodrigo Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40231-300, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratory of Plants Genetics and Biotechnology, Genetics Department, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, 50740-600, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172, India
| | - Flaviano S Martins
- Laboratory of Biotherapeutic Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Flavia Aburjaile
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
10
|
Deng L, Liu L, Fu T, Li C, Jin N, Zhang H, Li C, Liu Y, Zhao C. Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms 2023; 11:1620. [PMID: 37375122 DOI: 10.3390/microorganisms11061620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study aims to systematically evaluate the safety of a novel L. plantarum LPJZ-658 explored on whole-genome sequence analysis, safety, and probiotic properties assessment. Whole genome sequencing results demonstrated that L. plantarum LPJZ-658 consists of 3.26 Mbp with a GC content of 44.83%. A total of 3254 putative ORFs were identified. Of note, a putative bile saline hydrolase (BSH) (identity 70.4%) was found in its genome. In addition, the secondary metabolites were analyzed, and one secondary metabolite gene cluster was predicted to consist of 51 genes, which verified its safety and probiotic properties at the genome level. Additionally, L. plantarum LPJZ-658 exhibited non-toxic and non-hemolytic activity and was susceptible to various tested antibiotics, indicating that L. plantarum LPJZ-658 was safe for consumption. Moreover, the probiotic properties tests confirm that L. plantarum LPJZ-658 also exhibits tolerance to acid and bile salts, preferably hydrophobicity and auto-aggregation, and excellent antimicrobial activity against both Gram-positive and Gram-negative gastrointestinal pathogens. In conclusion, this study confirmed the safety and probiotic properties of L. plantarum LPJZ-658, suggesting it can be used as a potential probiotic candidate for human and animal applications.
Collapse
Affiliation(s)
- Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Tongyu Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yawen Liu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
11
|
Vanitha PR, Somashekaraiah R, Divyashree S, Pan I, Sreenivasa MY. Antifungal activity of probiotic strain Lactiplantibacillus plantarum MYSN7 against Trichophyton tonsurans. Front Microbiol 2023; 14:1192449. [PMID: 37389341 PMCID: PMC10303898 DOI: 10.3389/fmicb.2023.1192449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
The primary objective of this study was to assess the probiotic attributes and antifungal activity of lactic acid bacteria (LAB) against the fungus, Trichophyton tonsurans. Among the 20 isolates screened for their antifungal attributes, isolate MYSN7 showed strong antifungal activity and was selected for further analysis. The isolate MYSN7 exhibited potential probiotic characteristics, having 75 and 70% survival percentages in pH3 and pH2, respectively, 68.73% tolerance to bile, a moderate cell surface hydrophobicity of 48.87%, and an auto-aggregation percentage of 80.62%. The cell-free supernatant (CFS) of MYSN7 also showed effective antibacterial activity against common pathogens. Furthermore, the isolate MYSN7 was identified as Lactiplantibacillus plantarum by 16S rRNA sequencing. Both L. plantarum MYSN7 and its CFS exhibited significant anti-Trichophyton activity in which the biomass of the fungal pathogen was negligible after 14 days of incubation with the active cells of probiotic culture (106 CFU/ml) and at 6% concentration of the CFS. In addition, the CFS inhibited the germination of conidia even after 72 h of incubation. The minimum inhibitory concentration of the lyophilized crude extract of the CFS was observed to be 8 mg/ml. Preliminary characterization of the CFS showed that the active component would be organic acids in nature responsible for antifungal activity. Organic acid profiling of the CFS using LC-MS revealed that it was a mixture of 11 different acids, and among these, succinic acid (9,793.60 μg/ml) and lactic acid (2,077.86 μg/ml) were predominant. Additionally, a scanning electron microscopic study revealed that CFS disrupted fungal hyphal structure significantly, which showed scanty branching and bulged terminus. The study indicates the potential of L. plantarum MYSN7 and its CFS to control the growth of T. tonsurans. Furthermore, in vivo studies need to be conducted to explore its possible applications on skin infections.
Collapse
Affiliation(s)
- P. R. Vanitha
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
- Maharani's Science College for Women, Mysuru, India
| | | | - S. Divyashree
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Indranil Pan
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
12
|
Martiz RM, Kumari V. B. C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P. A, Ramu R. Inhibition of carbohydrate hydrolyzing enzymes by a potential probiotic Levilactobacillus brevis RAMULAB49 isolated from fermented Ananas comosus. Front Microbiol 2023; 14:1190105. [PMID: 37389344 PMCID: PMC10303921 DOI: 10.3389/fmicb.2023.1190105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
13
|
Kocabay S. Evaluation of probiotic properties of Levilactobacillus brevis isolated from hawthorn vinegar. Arch Microbiol 2023; 205:258. [PMID: 37286902 DOI: 10.1007/s00203-023-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Probiotic microorganisms are increasing their interest today due to the benefits they provide to humans. Vinegar is the process of processing foods containing carbohydrates that can be fermented by acetic acid bacteria and yeasts. Hawthorn vinegar is also important in terms of amino acids, aromatic compounds, organic acids, vitamins and minerals it contains. Depending on the variety of microorganisms in it, the content of hawthorn vinegar changes, especially its biological activity. Bacteria were isolated from handmade hawthorn vinegar obtained in this study. After performing its genotypic characterization, it has been tested that it can grow in low pH environment, survive in artificial gastric and small intestinal fluid, survive against bile acids, surface adhesion characteristics, antibiotic susceptibility, adhesion, and degrade various cholesterol precursors. According to the results obtained, the studied isolate is Levilactobacillus brevis, it can reproduce best at pH 6.3, survives 72.22% in simulated gastric juice, 69.59% in small intestinal fluid, and 97% adhesion to HTC-116. Partially reproduces even in the presence of 2% ox-bile, surface hydrophobicity is 46.29% for n-hexadecane. It has been determined that it can degrade 4 different cholesterol precursors except for Sodium thioglycolate and is generally resistant to antibiotics except for CN30 and N30. Considering the experimental findings of Levilactobacillus brevis isolated from hawthorn vinegar for the first time, it can be said that Levilactobacillus brevis has probiotic properties.
Collapse
Affiliation(s)
- Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University , Malatya, Turkey.
| |
Collapse
|
14
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
15
|
Das R, Tamang B, Najar IN, Thakur N, Mondal K. First report on metagenomics and their predictive functional analysis of fermented bamboo shoot food of Tripura, North East India. Front Microbiol 2023; 14:1158411. [PMID: 37125168 PMCID: PMC10130461 DOI: 10.3389/fmicb.2023.1158411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Moiya pansung, mileye amileye, moiya koshak, and midukeye are naturally fermented bamboo shoot foods of Tripura. The present study aimed to reveal the whole microbial community structure of naturally fermented moiya pangsung, mileye amileye, moiya koshak, and midukeye along with the prediction of microbial functional profiles by shotgun metagenomic sequence analysis. The metataxonomic profile of moiya pangsung, mileye amileye, moiya koshak, and midukeye samples showed different domains, viz., bacteria (97.70%) followed by the virus (0.76%), unclassified (0.09%), eukaryotes (1.46%) and archaea (0.05%). Overall, 49 phyla, 409 families, 841 genera, and 1,799 species were found in all the fermented bamboo shoot samples collected from different places of Tripura. Firmicutes was the most abundant phylum (89.28%) followed by Proteobacteria (5.13%), Bacteroidetes (4.38%), Actinobacteria (1.02%), and Fusobacteria (0.17%). Lactiplantibacillus plantarum was the most abundant species in moiya pangsung, mileye amileye, moiya koshak, and midukeye followed by Lactococcus lactis, Levilactobacillus brevis, Leuconostoc mesenteroides, Weissella paramesenteroides, Leuconostoc kimchii, Pediococcus pentosaceus, Leuconostoc gasicomitatum, and Lacticaseibacillus casei. A few phyla of fungus were found, viz., Ascomycota, Basidiomycota, and Glomeromycota, where Ascomycota was present in high abundance. Functional analysis of moiya pangsung, mileye amileye, moiya koshak, and midukeye metagenome revealed the genes for the synthesis and metabolism of a wide range of bioactive compounds including, various essential amino acids, and conjugated amino acids. The abundance profile and predictive analysis of fermented bamboo shoots revealed a huge plethora of essential microorganisms and KEGG analysis revealed genes for amino acid metabolism, pectin degradation, lipid metabolism, and many other essential pathways that can be essential for the improvement of nutritional and sensory qualities of the fermented bamboo shoot products.
Collapse
Affiliation(s)
- Rohit Das
- Department of Microbiology, Sikkim University, Gangtok, India
| | | | | | - Nagendra Thakur
- Department of Microbiology, Sikkim University, Gangtok, India
| | | |
Collapse
|
16
|
Silva SPM, Teixeira JA, Silva CCG. Prevention of Fungal Contamination in Semi-Hard Cheeses by Whey–Gelatin Film Incorporated with Levilactobacillus brevis SJC120. Foods 2023; 12:foods12071396. [PMID: 37048215 PMCID: PMC10093246 DOI: 10.3390/foods12071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cheese whey fermented by lactic acid bacteria (LAB) was used to develop an edible film with antifungal properties. Five LAB strains isolated from artisanal cheeses were screened for antifungal activity and incorporated into a whey–gelatin film. Of the strains tested, Levilactobacillus brevis SJC120 showed the strongest activity against five filamentous fungi isolated from cheese and cheese-making environment, at both 10 °C and 20 °C. The cell-free supernatant from L. brevis inhibited fungal growth by more than 80%. Incorporation of bacterial cells into the film did not alter the moisture content, water vapor permeability, or mechanical and optical properties. The whey–gelatin film was also able to maintain the viability of L. brevis cells at 107 log CFU/g after 30 days at 10 °C. In cheeses wrapped with L. brevis film, the size of fungal colonies decreased by 55% to 76%. Furthermore, no significant differences (p > 0.05) were observed in cheese proteolysis or in the moisture, fat, and protein content of the cheese wrapped with films. The results showed that whey–gelatin film with L. brevis SJC120 can reduce the contamination of cheese with filamentous fungi and could be used as an alternative to conventional cheese preservation and packaging.
Collapse
Affiliation(s)
- Sofia P. M. Silva
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - José A. Teixeira
- Centre of Biological Engineering (CEB), University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Célia C. G. Silva
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence:
| |
Collapse
|
17
|
Yao D, Wang X, Ma L, Wu M, Xu L, Yu Q, Zhang L, Zheng X. Impact of Weissella cibaria BYL4.2 and its supernatants on Penicillium chrysogenum metabolism. Front Microbiol 2022; 13:983613. [PMID: 36274712 PMCID: PMC9581191 DOI: 10.3389/fmicb.2022.983613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) can produce a vast spectrum of antifungal metabolites to inhibit fungal growth. The purpose of this study was to elucidate the antifungal effect of isolated Weissella cibaria BYL4.2 on Penicillium chrysogenum, the antifungal activity of W. cibaria BYL4.2 against P. chrysogenum was evaluated by the superposition method, results showed that it had obviously antifungal activity against P. chrysogenum. Studying the probiotic properties of BYL4.2 and determining it as beneficial bacteria. Furtherly, different treatments were carried out to characterize the antifungal activity of cell-free supernatant (CFS) produced by W. cibaria BYL4.2, and it was shown that the CFS was pH-dependent, partly heat-sensitive, and was not influenced by proteinaceous treatment. The CFS of W. cibaria BYL4.2 was analyzed by high-performance liquid chromatography (HPLC) and found the highest content of lactic acid. Screening of metabolic markers by a non-targeted metabolomics approach based liquid chromatography-mass spectrometry (LC-MS). The results speculated that organic acid especially detected D-tartaric acid was the main antifungal substance of CFS, which could cause the down-regulation of metabolites in the ABC transporters pathway, thereby inhibiting the growth of P. chrysogenum. Therefore, this study may provide important information for the inhibitory mechanism of W. cibaria BYL4.2 on P. chrysogenum, and provide a basis for further research on the antifungal effect of Weissella.
Collapse
|
18
|
Probiotic and Antifungal Attributes of Lactic Acid Bacteria Isolates from Naturally Fermented Brazilian Table Olives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research with fermented olives as a source of wild Lactic Acid Bacteria (LAB) strains with probiotic and biotechnological characteristics constitutes a promising field of work. The present study evaluated in vitro probiotic, antifungal, and antimycotoxigenic potential of LAB isolates from naturally fermented Brazilian table olives. Among fourteen LAB isolates, the Levilactobacillus brevis CCMA 1762, Lactiplantibacillus pentosus CCMA 1768, and Lacticaseibacillus paracasei subsp. paracasei CCMA 1770 showed potential probiotic and antifungal properties. The isolates showed resistance to pH 2.0 (survival ≥ 84.55), bile salts (survival ≥ 99.44), and gastrointestinal tract conditions (survival ≥ 57.84%); hydrophobic cell surface (≥27%); auto-aggregation (≥81.38%); coaggregation with Escherichia coli INCQS 00181 (≥33.97%) and Salmonella Enteritidis ATCC 564 (≥53.84%); adhesion to the epithelial cell line Caco-2 (≥5.04%); antimicrobial activity against the bacteria S. Enteritidis ATCC 564 (≥6 mm), Listeria monocytogenes ATCC 19117 (≥6 mm), Staphylococcus aureus ATCC 8702 (≥3 mm), and the fungi Penicillium nordicum MUM 08.16 (inhibition ≥ 64.8%). In addition, the strains showed the ability to adsorb the mycotoxins aflatoxin B1 (≥40%) and ochratoxin A (≥34%). These results indicate that LAB strains from naturally fermented Brazilian table olives are potentially probiotic and antifungal candidates that can be used for food biopreservation.
Collapse
|
19
|
Shruthi B, Deepa N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00716. [PMID: 35257004 PMCID: PMC8897636 DOI: 10.1016/j.btre.2022.e00716] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 01/17/2023]
Abstract
In this review, the probiotic attributes of yeasts other than Saccharomyces boulardii and the various applications of probiotic yeast in biotechnology have been explored. This review comprises of the probiotic attributes, antagonistic activity against pathogens, plant growth promoting attributes, industrial application and their biotherapeutic potentials. Advanced and additional studies on non-Saccharomyces yeasts are necessary prior to administer these yeasts as potential probiotics for health and wellbeing.
Probiotics are vital and beneficial organisms which offers the health benefits to the host organisms. The fungal probiotic field is one of the developing fields nowadays. Yeast has an enormous and diverse group of microorganisms that is attracting and expanding the attention from researchers and industries. Saccharomyces boulardii, the only patented strain belonging to yeast genera for the human use, has been broadly evaluated for its probiotic effect. Yeasts belonging to the genera Debaryomyces, Pichia, Yarrowia, Meyerozyma, Kluyveromyces etc.., have attained more interest because of their beneficial and probable probiotic features. These yeast probiotics produce VOCs (Volatile organic compounds), mycocins and antimicrobials which shows the antagonistic effect against pathogenic fungi and bacteria. Additionally, those yeasts have been recorded as good plant growth promoting microorganisms. Yeast has an important role in environmental applications such as bioremediation and removal of metals like chromium, mercury, lead etc., from waste water. Probiotic yeasts with their promising antimicrobial, antioxidant, anticancer properties, cholesterol assimilation and immunomodulatory effects can also be utilized as biotherapeutics. In this review article we have made an attempt to address important yeast probiotic attributes.
Collapse
|
20
|
Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl Microbiol Biotechnol 2022; 106:505-521. [PMID: 35015145 PMCID: PMC8749913 DOI: 10.1007/s00253-021-11646-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
Probiotics have been considered as an economical and safe alternative for the treatment of a large number of chronic diseases and improvement of human health. They are known to modulate the host immunity and protect from several infectious and non-infectious diseases. The colonization, killing of pathogens and induction of host cells are few of the important probiotic attributes which affect several functions of the host. In addition, prebiotics and non-digestible food substances selectively promote the growth of probiotics and human health through nutrient enrichment, and modulation of gut microbiota and immune system. This review highlights the role of probiotics and prebiotics alone and in combination (synbiotics) in the modulation of immune system, treatment of infections, management of inflammatory bowel disease and cancer therapy. KEY POINTS: • Probiotics and their derivatives against several human diseases. • Prebiotics feed probiotics and induce several functions in the host. • Discovery of novel and biosafe products needs attention for human health.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Indu Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Bijender Singh
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
- Department of Biotechnology, Central University of Haryana, Jant-Pali 123031, Mahendragarh, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
21
|
Abstract
In the beer brewing industry, microbial spoilage presents a consistent threat that must be monitored and controlled to ensure the palatability of a finished product. Many of the predominant beer spoilage microbes have been identified and characterized, but the mechanisms of contamination and persistence remain an open area of study. Postproduction, many beers are distributed as kegs that are attached to draft delivery systems in retail settings where ample opportunities for microbial spoilage are present. As such, restaurants and bars can experience substantial costs and downtime for cleaning when beer draft lines become heavily contaminated. Spoilage monitoring on the retail side of the beer industry is often overlooked, yet this arena may represent one of the largest threats to the profitability of a beer if its flavor profile becomes substantially distorted by contaminating microbes. In this study, we sampled and cultured microbial communities found in beers dispensed from a retail draft system to identify the contaminating bacteria and yeasts. We also evaluated their capability to establish new biofilms in a controlled setting. Among four tested beer types, we identified over a hundred different contaminant bacteria and nearly 20 wild yeasts. The culturing experiments demonstrated that most of these microbes were viable and capable of joining new biofilm communities. These data provide an important reference for monitoring specific beer spoilage microbes in draft systems and we provide suggestions for cleaning protocol improvements. IMPORTANCE Beer production, packaging, and service are each vulnerable to contamination by microbes that metabolize beer chemicals and impart undesirable flavors, which can result in the disposal of entire batches. Therefore, great effort is taken by brewmasters to reduce and monitor contamination during production and packaging. A commonly overlooked quality control stage of a beer supply chain is at the retail service end, where beer kegs supply draft lines in bars and restaurants under nonsterile conditions. We found that retail draft line contamination is rampant and that routine line cleaning methods are insufficient to efficiently suppress beer spoilage. Thus, many customers unknowingly consume spoiled versions of the beers they consume. This study identified the bacteria and yeast that were resident in retail draft beer samples and also investigated their abilities to colonize tubing material as members of biofilm communities.
Collapse
|
22
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|