1
|
Jiménez-Castellanos JC, Waclaw B, Meynert A, McAteer SP, Schneiders T. Rapid evolution of colistin resistance in a bioreactor model of infection of Klebsiella pneumoniae. Commun Biol 2024; 7:794. [PMID: 38951173 PMCID: PMC11217424 DOI: 10.1038/s42003-024-06378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.
Collapse
Affiliation(s)
- Juan-Carlos Jiménez-Castellanos
- Chemical Biology of Antibiotics, Centre for Infection & Immunity (CIIL), Pasteur Institute, INSERM U1019-CNRS UMR 9017, Lille, France
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Warsaw, Poland.
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sean P McAteer
- Department of Bacteriology, The Roslin Institute and R(D) SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, UK
| | - Thamarai Schneiders
- Centre for Inflammation Research, Institute of Regeneration and Repair, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Khoshbayan A, Narimisa N, Elahi Z, Bostanghadiri N, Razavi S, Shariati A. Global prevalence of mutation in the mgrB gene among clinical isolates of colistin-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Front Microbiol 2024; 15:1386478. [PMID: 38912352 PMCID: PMC11190090 DOI: 10.3389/fmicb.2024.1386478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Colistin is used as a last resort for managing infections caused by multidrug-resistant bacteria. However, the high emergence of colistin-resistant strains has restricted the clinical use of this antibiotic in the clinical setting. In the present study, we evaluated the global prevalence of the mutation in the mgrB gene, one of the most important mechanisms of colistin resistance in Klebsiella pneumoniae. Methods Several databases, including Scopus, Medline (via PubMed), and Web of Science, were searched (until August 2023) to identify those studies that address the mgrB mutation in clinical isolates of K. pneumoniae. Using Stata software, the pooled prevalence of mgrB mutation and subgroup analyses for the year of publication, country, continent, mgrB mutation types, and detection methods of mgrB mutation were analyzed. Results Out of the 115 studies included in the analysis, the prevalence of mgrB mutations in colistin-resistant K. pneumoniae isolates was estimated at 65% of isolates, and mgrB variations with insertional inactivation had the highest prevalence among the five investigated mutations with 69%. The year subgroup analysis indicated an increase in mutated mgrB from 46% in 2014 to 61% in 2022. Europe had the highest prevalence of mutated mgrB at 73%, while Africa had the lowest at 54%. Conclusion Mutations in the mgrB gene are reported as one of the most common mechanisms of colistin resistance in K. pneumoniae, and the results of the present study showed that 65% of the reported colistin-resistant K. pneumoniae had a mutation in this gene.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narjess Bostanghadiri
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine research center, Khomein University of Medical Sciences, Khomein, Iran
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Mendes G, Santos ML, Ramalho JF, Duarte A, Caneiras C. Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1325077. [PMID: 38098668 PMCID: PMC10720631 DOI: 10.3389/fmicb.2023.1325077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenem-resistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Leonor Santos
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Wang L, Shen W, Cai J. Mobilization of the blaKPC-14 gene among heterogenous plasmids in extensively drug-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1261261. [PMID: 38033558 PMCID: PMC10684954 DOI: 10.3389/fmicb.2023.1261261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ceftazidime/avibactam (CZA) is an effective alternative for the treatment of infections caused by KPC-producing carbapenem-resistant Klebsiella pneumoniae (CRKP). However, KPC variants with CZA resistance have been observed in clinical isolates, further limiting the treatment options of clinical use. Methods In this study, we isolated three KPC-14-producing CRKP from two patients in intensive care units without CZA therapy. The antimicrobial susceptibility was determined using the broth microdilution method. Three CRKP were subjected to whole-genome sequencing to analyze the phylogenetic relatedness and the carriage of antimicrobial resistance genes and virulence factors. Long-read sequencing was also performed to obtain the complete sequences of the plasmids. The horizontal transfer of the blaKPC-14 gene was evaluated by conjugation experiments. Results Three CRKP displayed resistance or reduced susceptibility to ceftazidime/avibactam, colistin, and tigecycline. Single-nucleotide polymorphism (SNP) analysis demonstrated the close phylogenetic distance between these strains. A highly similar IncFII/IncR plasmid encoding blaKPC-14 was shared by three CRKP, with blaKPC-14 located in an NTEKPC-Ib element with the core region of ISKpn27- blaKPC-14-ISKpn6. This structure containing blaKPC-14 was also observed in another tet(A)-carrying plasmid that belonged to an unknown Inc-type in two out of three isolates. The horizontal transferability of these integrated plasmids to Escherichia coli EC600 was confirmed by the cotransmission of tet(A) and blaKPC-14 genes, but the single transfer of blaKPC-14 on the IncFII/IncR plasmid failed. Three CRKP expressed yersiniabactin and carried a hypervirulence plasmid encoding rmpA2 and aerobactin-related genes, and were thus classified as carbapenem-resistant hypervirulent K. pneumoniae (hvKP). Discussion In this study, we reported the evolution of a mosaic plasmid encoding the blaKPC-14 gene via mobile elements in extensively drug-resistant hvKP. The blaKPC-14 gene is prone to integrate into other conjugative plasmids via the NTEKPC-Ib element, further facilitating the spread of ceftazidime/avibactam resistance.
Collapse
Affiliation(s)
| | | | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhu L, Li P, Zhang G, He Z, Tao X, Ji Y, Yang W, Zhu X, Luo W, Liao W, Chen C, Liu Y, Zhang W. Role of the ISKpn element in mediating mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Front Microbiol 2023; 14:1277320. [PMID: 37840706 PMCID: PMC10569121 DOI: 10.3389/fmicb.2023.1277320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Colistin has emerged as a last-resort therapeutic against antibiotic-resistant bacterial infections, particularly those attributed to carbapenem-resistant Enterobacteriaceae (CRE) like CRKP. Yet, alarmingly, approximately 45% of multidrug-resistant Klebsiella pneumoniae strains now manifest resistance to colistin. Through our study, we discerned that the synergy between carbapenemase and IS elements amplifies resistance in Klebsiella pneumoniae, thereby narrowing the existing therapeutic avenues. This underscores the instrumental role of IS elements in enhancing colistin resistance through mgrB disruption. Methods From 2021 to 2023, 127 colistin-resistant Klebsiella pneumoniae isolates underwent meticulous examination. We embarked on an exhaustive genetic probe, targeting genes associated with both plasmid-mediated mobile resistance-encompassing blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48-like, and mcr-1 to mcr-8-and chromosome-mediated resistance systems, including PhoP/Q, PmrA/B, and mgrB. PCR amplification revealed the presence of virulence-associated genes from the pLVPK plasmid, such as rmpA, rmpA2, iucA, iroB, and peg344. mgrB sequencing was delegated to Sangon Biotech, Shanghai, and the sequences procured were validated using BLAST. Our search for IS elements was navigated through the IS finder portal. Phenotypically, we harnessed broth microdilution (BMD) to ascertain the MICs of colistin. To sketch the clonal lineage of mgrB-mutated CoR-Kp isolates, sophisticated methodologies like MLST and PFGE were deployed. S1-PFGE unraveled the intrinsic plasmids in these isolates. Our battery of virulence assessment techniques ranged from the string test and capsular serotyping to the serum killing assay and the Galleria mellonella larval infection model. Results Among the 127 analyzed isolates, 20 showed an enlarged mgrB PCR amplicon compared to wild-type strains. These emerged over a three-year period: three in 2021, thirteen in 2022, and four in 2023. Antimicrobial susceptibility tests revealed that these isolates consistently resisted several drugs, notably TCC, TZP, CAZ, and COL. Additionally, 85% resisted both DOX and TOB. The MICs for colistin across these strains ranged between 16 to 64 mg/L, with a median of 40 mg/L. From a genetic perspective, MLST unanimously categorized these mgrB-mutated CoR-hvKp isolates as ST11. PFGE further delineated them into six distinct clusters, with clusters A and D being predominant. This distribution suggests potential horizontal and clonal genetic transmission. Intriguingly, every mgrB-mutated CoR-hvKP isolate possessed at least two virulence genes akin to the pLVPK-like virulence plasmid, with iroB and rmpA2 standing out. Their virulence was empirically validated both in vitro and in vivo. A pivotal discovery was the identification of three distinct insertion sequence (IS) elements within or near the mgrB gene. These were:ISKpn26 in eleven isolates, mainly in cluster A, with various insertion sites including +74, +125, and an upstream -35.ISKpn14 in four isolates with insertions at +93, -35, and two upstream at -60.IS903B present in five isolates, marking positions like +74, +125, +116, and -35 in the promoter region. These diverse insertions, spanning six unique locations in or near the mgrB gene, underscore its remarkable adaptability. Conclusion Our exploration spotlights the ISKpn element's paramount role in fostering mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Employing MLST and PFGE, we unearthed two primary genetic conduits: clonal and horizontal. A striking observation was the ubiquitous presence of the KPC carbapenemase gene in all the evaluated ST11 hypervirulent colistin-resistant Klebsiella pneumoniae strains, with a majority also harboring the NDM gene. The myriad mgrB gene insertion locales accentuate its flexibility and the overarching influence of IS elements, notably the pervasive IS5-like variants ISKpn26 and IS903B. Our revelations illuminate the escalating role of IS elements in antibiotic resistance within ST11 hypervirulent colistin-resistant Klebsiella pneumoniae, advocating for innovative interventions to counteract these burgeoning resistance paradigms given their profound ramifications for prevailing treatment modalities.
Collapse
Affiliation(s)
- Lanlan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Yichun People’s Hospital, Yichun, China
| | - Guangyi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhiyong He
- First Clinical Medical College of Nanchang University, Nanchang University, Nanchang, China
| | - Xingyu Tao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yicheng Ji
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wenjing Yang
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaofang Zhu
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wanying Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjian Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuanhui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Liu
- National Regional Center for Respiratory Medicine, Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Huang J, Zhao J, Yi M, Yuan Y, Xia P, Yang B, Liao J, Dang Z, Xia Y. Emergence of Tigecycline and Carbapenem-Resistant Citrobacter freundii Co-Carrying tmexCD1 -toprJ1, blaKPC-2, and blaNDM-1 from a Sepsis Patient. Infect Drug Resist 2023; 16:5855-5868. [PMID: 37692469 PMCID: PMC10492580 DOI: 10.2147/idr.s426148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This research aims to profile ten novel strains of carbapenem-resistant Enterobacteriaceae (CRE) co-carrying blaKPC and blaNDM. Methods Clinical CRE strains, along with corresponding medical records, were gathered. To ascertain the susceptibility of the strains to antibiotics, antimicrobial susceptibility tests were conducted. To validate the transferability and cost of fitness of plasmids, conjugation experiments and growth curves were employed. For determining the similarity between different strains, ERIC-PCR was utilised. Meanwhile, whole genome sequencing (WGS) was performed to characterise the features of plasmids and their evolutionary characteristics. Results During the course of this research, ten clinical CRE strains co-carrying blaKPC and blaNDM were gathered. It was discovered that five out of these ten strains exhibited resistance to tigecycline. A closer examination of the mechanisms underlying tigecycline resistance revealed that tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 existed concurrently within a single Citrobacter freundii strain (CF10). This strain, with a minimum inhibitory concentration (MIC) of 32 mg/L to tigecycline, was obtained from a sepsis patient. Furthermore, an investigation of genome evolution implied that CF10 belonged to a novel ST type 696, which lacked analogous strains. Aligning plasmids exposed that similar plasmids all had less than 70% coverage when compared to pCF10-tmexCD1, pCF10-KPC, and pCF10-NDM. It was also found that tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 were transferred by Tn5393, IS5, and Tn6296, respectively. Conclusion This research presents the first report of coexistence of tmexCD1-toprJ1, blaKPC-2, and blaNDM-1 in a carbapenem and tigecycline-resistant C. freundii strain, CF10. Importance Tigecycline is considered a "last resort" antibiotic for treating CRE infections. The ongoing evolution of resistance mechanisms to both carbapenem and tigecycline presents an alarming situation. Moreover, the repeated reporting of both these resistance mechanisms within a single strain poses a significant risk to public health. The research revealed that the genes tmexCD1-toprJ1, blaKPC-2, and blaNDM-1, which cause carbapenem and tigecycline-resistance in the same strain, were located on mobile elements, suggesting a potential for horizontal transmission to other Gram-negative bacteria. The emergence of such a multi-resistant strain within hospitals should raise significant concern due to the scarcity of effective antimicrobial treatments for these "superbugs".
Collapse
Affiliation(s)
- Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Miao Yi
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yaling Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiajia Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zijun Dang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Venkatesan M, Fruci M, Verellen LA, Skarina T, Mesa N, Flick R, Pham C, Mahadevan R, Stogios PJ, Savchenko A. Molecular mechanism of plasmid-borne resistance to sulfonamide antibiotics. Nat Commun 2023; 14:4031. [PMID: 37419898 PMCID: PMC10328974 DOI: 10.1038/s41467-023-39778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
The sulfonamides (sulfas) are the oldest class of antibacterial drugs and inhibit the bacterial dihydropteroate synthase (DHPS, encoded by folP), through chemical mimicry of its co-substrate p-aminobenzoic acid (pABA). Resistance to sulfa drugs is mediated either by mutations in folP or acquisition of sul genes, which code for sulfa-insensitive, divergent DHPS enzymes. While the molecular basis of resistance through folP mutations is well understood, the mechanisms mediating sul-based resistance have not been investigated in detail. Here, we determine crystal structures of the most common Sul enzyme types (Sul1, Sul2 and Sul3) in multiple ligand-bound states, revealing a substantial reorganization of their pABA-interaction region relative to the corresponding region of DHPS. We use biochemical and biophysical assays, mutational analysis, and in trans complementation of E. coli ΔfolP to show that a Phe-Gly sequence enables the Sul enzymes to discriminate against sulfas while retaining pABA binding and is necessary for broad resistance to sulfonamides. Experimental evolution of E. coli results in a strain harboring a sulfa-resistant DHPS variant that carries a Phe-Gly insertion in its active site, recapitulating this molecular mechanism. We also show that Sul enzymes possess increased active site conformational dynamics relative to DHPS, which could contribute to substrate discrimination. Our results reveal the molecular foundation for Sul-mediated drug resistance and facilitate the potential development of new sulfas less prone to resistance.
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Lou Ann Verellen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
- Center for Structural Biology of Infectious Diseases (CSBID), Calgary, AB, Canada.
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
- Center for Structural Biology of Infectious Diseases (CSBID), Calgary, AB, Canada.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring bla NDM-1 and bla KPC-2 in a tertiary hospital in China. BMC Microbiol 2023; 23:64. [PMID: 36882683 PMCID: PMC9990273 DOI: 10.1186/s12866-023-02808-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The prevalence of multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKP) has gradually increased. It poses a severe threat to human health. However, polymyxin-resistant hvKP is rare. Here, we collected eight polymyxin B-resistant K. pneumoniae isolates from a Chinese teaching hospital as a suspected outbreak. RESULTS The minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. HvKP was identified by detecting virulence-related genes and using a Galleria mellonella infection model. Their resistance to serum, growth, biofilm formation, and plasmid conjugation were analyzed in this study. Molecular characteristics were analyzed using whole-genome sequencing (WGS) and mutations of chromosome-mediated two-component systems pmrAB and phoPQ, and the negative phoPQ regulator mgrB to cause polymyxin B (PB) resistance were screened. All isolates were resistant to polymyxin B and sensitive to tigecycline; four were resistant to ceftazidime/avibactam. Except for KP16 (a newly discovered ST5254), all were of the K64 capsular serotype and belonged to ST11. Four strains co-harbored blaKPC-2, blaNDM-1, and the virulence-related genes prmpA, prmpA2, iucA, and peg344, and were confirmed to be hypervirulent by the G. mellonella infection model. According to WGS analysis, three hvKP strains showed evidence of clonal transmission (8-20 single nucleotide polymorphisms) and had a highly transferable pKOX_NDM1-like plasmid. KP25 had multiple plasmids carrying blaKPC-2, blaNDM-1, blaSHV-12, blaLAP-2, tet(A), fosA5, and a pLVPK-like virulence plasmid. Tn1722 and multiple additional insert sequence-mediated transpositions were observed. Mutations in chromosomal genes phoQ and pmrB, and insertion mutations in mgrB were major causes of PB resistance. CONCLUSIONS Polymyxin-resistant hvKP has become an essential new superbug prevalent in China, posing a serious challenge to public health. Its epidemic transmission characteristics and mechanisms of resistance and virulence deserve attention.
Collapse
|
9
|
Antibiotic Susceptibility Patterns for Carbapenem-Resistant Enterobacteriaceae. Int J Microbiol 2023; 2023:8920977. [PMID: 36860272 PMCID: PMC9970715 DOI: 10.1155/2023/8920977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023] Open
Abstract
Carbapenem is a broad-spectrum beta-lactam antibiotic considered the last choice for the treatment of antibiotic-resistant Gram-negative bacteria. Thus, the increasing rate of carbapenem resistance (CR) in Enterobacteriaceae is an urgent public health threat. This study aimed to evaluate the antibiotic susceptibility pattern of carbapenem-resistant Enterobacteriaceae (CRE) to new and old antibiotics. In this study, Klebsiella pneumoniae, E. coli, and Enterobacter spp. were collected from 10 hospitals in Iran for one year. CRE is recognized by resistance to meropenem and/or imipenem disk after identification of the collected bacteria. Antibiotic susceptibility of CRE against fosfomycin, rifampin, metronidazole, tigecycline, and aztreonam was detected by disk diffusion method and colistin by MIC. In this study, 1222 E. coli, 696 K. pneumoniae, and 621 Enterobacter spp. were collected from 10 hospitals in Iran in one year. Fifty-four E. coli (4.4%), 84 K. pneumoniae (12%), and 51 Enterobacter spp. (8.2%) were CRE. All CRE strains were resistant to metronidazole and rifampicin. Tigecycline has the highest sensitivity on CRE and levofloxacin for Enterobacter spp. Tigecycline showed an acceptable effectiveness rate of sensitivity on the CRE strain. Therefore, we suggest that clinicians consider this valuable antibiotic to treat CRE.
Collapse
|
10
|
Liang M, Mao G, Zhang X, He Q, Ying Q, Wang S, Jin F, Dong S, Lin X, Ruan Y, Li M, Lv L, Zhou Y. Drug resistance patterns of Klebsiella pneumonia strains isolated from Shaoxing City, Zhejiang Province in 2019: a multi-centre retrospective study. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Meichun Liang
- Department of Clinical Laboratory, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Guofeng Mao
- Department of Clinical Laboratory, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Xiaojiao Zhang
- Department of Clinical Laboratory, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Qiuli He
- Department of Clinical Laboratory, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Qunhua Ying
- Department of Clinical Laboratory, Shaoxing Maternal and Child Health Hospital, Shaoxing, People’s Republic of China
| | - Sheliang Wang
- Department of Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, People’s Republic of China
| | - Faxiang Jin
- Department of Clinical Laboratory, The Affiliated Hospital of Shaoxing University, Shaoxing, People’s Republic of China
| | - Su Dong
- Department of Clinical Laboratory, Shaoxing Traditional Chinese Medicine Hospital, Shaoxing, People’s Republic of China
| | - Xiuqin Lin
- Department of Clinical Laboratory, Shaoxing Seventh Hospital, Shaoxing, People’s Republic of China
| | - Yongchun Ruan
- Department of Infectious Diseases, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Minghui Li
- Department of Infectious Diseases, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Li Lv
- Department of Clinical Laboratory, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| | - Yiqing Zhou
- Department of Infectious Diseases, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People’s Republic of China
| |
Collapse
|
11
|
Wang Q, Chen M, Ou Q, Zheng L, Chen X, Mao G, Fang J, Jin D, Tang X. Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae clinical isolates from a tertiary hospital in China: Antimicrobial susceptibility, resistance phenotype, epidemiological characteristics, microbial virulence, and risk factors. Front Cell Infect Microbiol 2022; 12:1083009. [PMID: 36619764 PMCID: PMC9811262 DOI: 10.3389/fcimb.2022.1083009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hypervirulent and multidrug-resistant Klebsiella pneumoniae poses a significant threat to public health. We aimed to determine the common carbapenemase genotypes and the carriage patterns, main antibiotic resistance mechanisms, and in vitro susceptibility of clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) to ceftazidime/avibactam (CZA) for the reasonable selection of antimicrobial agents and determine whether hypermucoviscous (HMV) phenotype and virulence-associated genes are key factors for CRKP colonization and persistence. Antibiotics susceptibility of clinical CRKP isolates and carbapenemase types were detected. CRKP isolates were identified as hypermucoviscous K. pneumoniae (HMKP) using the string test, and detection of virulence gene was performed using capsular serotyping. The bla KPC-2, bla NDM, bla IMP, and/or bla OXA-48-like were detected in 96.4% (402/417) of the isolates, and the bla KPC-2 (64.7%, 260/402) was significantly higher (P<0.05) than those of bla NDM (25.1%), bla OXA-48-like (10.4%), and bla IMP (4.2%). Carriage of a single carbapenemase gene was observed in 96.3% of the isolates, making it the dominant antibiotic resistance genotype carriage pattern (P < 0.05). Approximately 3.7% of the isolates carried two or more carbapenemase genotypes, with bla KPC-2 + bla NDM and bla NDM + bla IMP being the dominant multiple antibiotic resistance genotype. In addition, 43 CRKP isolates were identified as HMKP, with a prevalence of 10.3% and 2.7% among CRKP and all K. pneumoniae isolates, respectively. Most clinical CRKP isolates were isolated from elderly patients, and carbapenemase production was the main mechanism of drug resistance. Tigecycline and polymyxin B exhibited exceptional antimicrobial activity against CRKP isolates in vitro. Furthermore, bla KPC-2, bla NDM, and bla OXA-48-like were the main carbapenemase genes carried by the CRKP isolates. CZA demonstrated excellent antimicrobial activity against isolates carrying the single bla KPC-2 or bla OXA-48-like genotype. Capsular serotype K2 was the main capsular serotype of the carbapenem-resistant HMKP isolates. Survival rates of Galleria mellonella injected with K. pneumoniae 1-7 were 20.0, 16.7, 6.7, 23.3, 16.7, 3.3, and 13.3, respectively. Therefore, worldwide surveillance of these novel CRKP isolates and carbapenem-resistant HMKP isolates as well as the implementation of stricter control measures are needed to prevent further dissemination in hospital settings.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengyuan Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qian Ou
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xuejing Chen
- Department of Clinical Laboratory, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guofeng Mao
- Department of Clinical Laboratory, Shaoxing People’s Hospital, Shaoxing, China
| | - Jiaqi Fang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China,Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, China,*Correspondence: Xiaofang Tang, ; Dazhi Jin, ; Jiaqi Fang,
| |
Collapse
|
12
|
Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7120414. [PMID: 36548669 PMCID: PMC9782491 DOI: 10.3390/tropicalmed7120414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence of genetic mutations in chromosomal genes and the transmissible plasmid-mediated colistin resistance gene may have helped in the spread of colistin resistance among various Klebsiella pneumoniae (K. pneumoniae) isolates and other different bacteria. In this study, the prevalence of mutated colistin-resistant K. pneumoniae isolates was studied globally using a systematic review and meta-analysis approach. A systematic search was conducted in databases including PubMed, ScienceDirect, Scopus and Google Scholar. The pooled prevalence of mutated colistin resistance in K. pneumoniae isolates was analyzed using Comprehensive Meta-Analysis Software (CMA). A total of 50 articles were included in this study. The pooled prevalence of mutated colistin resistance in K. pneumoniae was estimated at 75.4% (95% CI = 67.2−82.1) at high heterogeneity (I2 = 81.742%, p-value < 0.001). Meanwhile, the results of the subgroup analysis demonstrated the highest prevalence in Saudi Arabia with 97.9% (95% CI = 74.1−99.9%) and Egypt, with 4.5% (95% CI = 0.6−26.1%), had the lowest. The majority of mutations could be observed in the mgrB gene (88%), pmrB gene (54%) and phoQ gene (44%). The current study showed a high prevalence of the mutation of colistin resistance genes in K. pneumoniae. Therefore, it is recommended that regular monitoring be performed to control the spread of colistin resistance.
Collapse
|
13
|
Saki M, Amin M, Savari M, Hashemzadeh M, Seyedian SS. Beta-lactamase determinants and molecular typing of carbapenem-resistant classic and hypervirulent Klebsiella pneumoniae clinical isolates from southwest of Iran. Front Microbiol 2022; 13:1029686. [PMID: 36406386 PMCID: PMC9669656 DOI: 10.3389/fmicb.2022.1029686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 08/27/2023] Open
Abstract
This study investigated the molecular epidemiology of carbapenem-resistant classic Klebsiella pneumoniae (CR-cKp) and carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) isolates in southwestern Iran. From 2019 to 2021, 136 (88.9%) cKp and 17 (11.1%) hvKp isolates were identified using biochemical tests and polymerase chain reaction (PCR). Antibiotic resistance, beta-lactamases, and clonal relatedness of carbapenem-resistant isolates were investigated using disk diffusion, PCR, and enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), respectively. The different markers of hvKp isolates were as follows: string test (35.3%, n = 6/17), magA (11.8%, n = 2/17), rmpA (11.8%, n = 2/17), rmpA2 (52.9%, n = 9/17), iucA (52.9%, n = 9/17), and peg344 (35.3%, n = 6/17). Also, 55.1% (n = 75/136) of cKp and 47.1% (n = 8/17) of hvKp isolates were CR-cKp and CR-hvKp, respectively. All CR-hvKp (100.0%, n = 8) isolates were MDR. Colistin, tetracycline, and tigecycline were the most effective antibiotics. The occurrence of beta-lactamase genes in 75 CR-cKp and 8 CR-hvKp isolates was as follows: bla NDM (41.3, 25.0%), bla IMP (4.0, 0.0%), bla VIM (8.0, 0.0%), bla GES (14.7, 25.0%), bla OXA-48-like (20.0, 0.0%), bla CTX-M (26.7, 12.5%), bla SHV (24.0, 12.5%), bla TEM (10.7, 0.0%), bla FOX (6.7, 0.0%), bla DHA (6.7, 0.0%), bla CMY (5.3, 0.0%), bla LAT (12.0, 0.0%), and bla ACT (8.0, 0.0%). ERIC-PCR showed a high diversity among isolates. In this study, the occurrence of MDR CR-hvKp isolates harboring bla NDM and bla GES was detected for the first time in southwestern Iran. To prevent the spread of CR-hvKp and reduce selection pressure, long-term surveillance and more effective treatment strategies should be implemented.
Collapse
Affiliation(s)
- Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeid Seyedian
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Tian C, Xing M, Zhao Y, Fan X, Bai Y, Fu L, Wang S. Whole genome sequencing of OXA-232-producing wzi93-KL112-O1 carbapenem-resistant Klebsiella pneumoniae in human bloodstream infection co-harboring chromosomal ISEcp1-based blaCTX-M-15 and one rmpA2-associated virulence plasmid. Front Cell Infect Microbiol 2022; 12:984479. [PMID: 36250056 PMCID: PMC9560801 DOI: 10.3389/fcimb.2022.984479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives To characterize one OXA-232-producing wzi93-KL112-O1 carbapenem-resistant Klebsiella pneumoniae (CRKP) co-harboring chromosomal blaCTX-M-15 and one rmpA2-associated virulence plasmid. Methods Minimum inhibitory concentrations (MICs) were measured via broth microdilution method. Conjugation, chemical transformation, string test and Galleria mellonella infection model experiments were also conducted. Whole-genome sequencing (WGS) was performed on the Illumina and Nanopore platforms. Antimicrobial resistance determinants were identified using ABRicate program with ResFinder database. Insertion sequences (ISs) were identified using ISfinder. Bacterial virulence factors were identified using virulence factor database (VFDB). Wzi, capsular polysaccharide (KL) and lipoolygosaccharide (OCL) were analyzed using Kleborate with Kaptive. Phylogenetic analysis of 109 ST15 K. pneumoniae strains was performed using core genome multilocus sequence typing (cgMLST) on the Ridom SeqSphere+ server. MLST, replicons type, SNP strategies and another cgMLST analysis for 45 OXA-232-producing K. pneumoniae strains were further conducted using BacWGSTdb server. Results K. pneumoniae KPTCM strain belongs to ST15 with wzi93, KL112 and O1. It possessed a multidrug-resistant (MDR) profile and was resistant to carbapenems (meropenem and ertapenem), ciprofloxacin and amikacin. Virulence assays demonstrated KPTCM strain possesses a low virulence phenotype. WGS revealed it contained one circular chromosome and nine plasmids. The carbapenemase-encoding gene blaOXA-232 was located in a 6141-bp ColKP3-type non-conjugative plasmid and flanked by ΔISEcp1 and ΔlysR-ΔereA. Interestingly, blaCTX-M-15 was located in the chromosome mediated by ISEcp1-based transposon Tn2012. Importantly, it harbored a rmpA2-associated pLVPK-like virulence plasmid with iutA-iucABCD gene cluster and one IS26-mediated MDR fusion plasmid according to 8-bp (AGCTGCAC or GGCCTTTG) target site duplications (TSD). Based on the cgMLST and SNP analysis, data showed OXA-232-producing ST15 K. pneumoniae isolates were mainly isolated from China and have evolved in recent years. Conclusions Early detection of CRKP strains carrying chromosomal blaCTX-M-15, OXA-232 carbapenemase and pLVPK-like virulence plasmid is recommended to avoid the extensive spread of this high-risk clone.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
- *Correspondence: Siwei Wang, ; Liping Fu,
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
- *Correspondence: Siwei Wang, ; Liping Fu,
| |
Collapse
|
15
|
Liu S, Ding Y, Xu Y, Li Z, Zeng Z, Liu J. An outbreak of extensively drug-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a teaching hospital in Southwest China. Front Cell Infect Microbiol 2022; 12:979219. [PMID: 36176583 PMCID: PMC9513609 DOI: 10.3389/fcimb.2022.979219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Extensively drug-resistant and hypervirulent Klebsiella pneumoniae (XDR-hvKp) is a new problem for patients in Intensive Care Unit (ICU) and can become an even more severe threat if resistant to tigecycline, considered one of the ‘last lines of defense’ drugs. This study collected seven non-replicated tigecycline-resistant XDR-hvKp from seven patients and performed genome analysis and epidemiological investigation using whole genome equencing (WGS) and other methods. All strains in this study were identified as ST11-KL64 and showed high resistance to antibiotics such as β-lactams, aminoglycosides, quinolones, and tigecycline, and one strain was also resistant to colistin. All strains were determined to be hvKp by the results of serum resistance assay and Galleria mellonella infection models. All strains had resistance genes blaCTX-M-65,blaKPC-2,blaLAP-2,blaTEM-1B, rmtB, and qnrS1 and virulence factors such as rmpA, rmpA2, and aerobactin (iucABCD, iutA). The expression of the AcrAB-TolC efflux pump was upregulated in all strains, and the expression levels of the gene pmrK was significantly upregulated in colistin-resistant strain DP compared to colistin-sensitive strain WT in this study. In conclusion, we described an outbreak caused by tigecycline-resistant XDR-hvKp in the ICU of a teaching hospital in southwest China. The spread of these superbugs poses a great threat to patients and therefore requires us to closely monitor these XDR-hvKp and develop relevant strategies to combat them.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinbo Liu
- *Correspondence: Jinbo Liu, ; Zhangrui Zeng,
| |
Collapse
|
16
|
Wang Z, Wen Z, Jiang M, Xia F, Wang M, Zhuge X, Dai J. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Transbound Emerg Dis 2022; 69:e2661-e2676. [PMID: 35679514 DOI: 10.1111/tbed.14615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
Klebsiella pneumoniae is well-known opportunistic enterobacteria involved in complex clinical infections in humans and animals. The domestic animals might be a source of the multidrug-resistant virulent K. pneumoniae to humans. K. pneumoniae infections in domestic animals are considered as an emergent global concern. The horizontal gene transfer plays essential roles in bacterial genome evolution by spread of virulence and resistance determinants. However, the virulence genes can be transferred horizontally via K. pneumoniae-derived outer membrane vesicles (OMVs) remains to be unreported. In this study, we performed complete genome sequencing of two K. pneumoniae HvK2115 and CRK3022 with hypervirulent or carbapenem-resistant traits. OMVs from K. pneumoniae HvK2115 and CRK3022 were purified and observed. The carriage of virulence or resistance genes in K. pneumoniae OMVs was identified. The influence of OMVs on the horizontal transfer of virulence-related or drug-resistant plasmids among K. pneumoniae strains was evaluated thoroughly. The plasmid transfer to recipient bacteria through OMVs was identified by polymerase chain reaction, pulsed field gel electrophoresis and Southern blot. This study revealed that OMVs could mediate the intraspecific and interspecific horizontal transfer of the virulence plasmid phvK2115. OMVs could simultaneously transfer two resistance plasmids into K. pneumoniae and Escherichia coli recipient strains. OMVs-mediated horizontal transfer of virulence plasmid phvK2115 could significantly enhance the pathogenicity of human carbapenem-resistant K. pneumoniae CRK3022. The CRK3022 acquired the virulence plasmid phvK2115 could become a CR-hvKp strain. It was critically important that OMVs-mediated horizontal transfer of phvK2115 lead to the coexistence of virulence and carbapenem-resistance genes in K. pneumoniae, resulting in the emerging of carbapenem-resistant hypervirulent K. pneumoniae.
Collapse
Affiliation(s)
- Zhongxing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Gerace E, Mancuso G, Midiri A, Poidomani S, Zummo S, Biondo C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens 2022; 11:pathogens11060663. [PMID: 35745518 PMCID: PMC9229729 DOI: 10.3390/pathogens11060663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of six highly virulent multidrug-resistant bacteria named ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) responsible for life-threatening diseases. Taken together with Clostridioides difficile, Escherichia coli, Campylobacter spp., (C. jejuni and C. coli), Legionella spp., Salmonella spp., and Neisseria gonorrhoeae, all of these microorganisms are the leading causes of nosocomial infections. The rapid and accurate detection of these pathogens is not only important for the early initiation of appropriate antibiotic therapy, but also for resolving outbreaks and minimizing subsequent antimicrobial resistance. The need for ever-improving molecular diagnostic techniques is also of fundamental importance for improving epidemiological surveillance of bacterial infections. In this review, we aim to discuss the recent advances on the use of molecular techniques based on genomic and proteomic approaches for the diagnosis of bacterial infections. The advantages and limitations of each of the techniques considered are also discussed.
Collapse
Affiliation(s)
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Stefano Poidomani
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
- Correspondence: ; Tel.: +39-090-2213322
| |
Collapse
|
18
|
Yao J, Wang J, Chen M, Cai Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front Med (Lausanne) 2021; 8:741940. [PMID: 34950677 PMCID: PMC8688709 DOI: 10.3389/fmed.2021.741940] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment of multidrug-resistant (MDR) Gram-negative bacteria (GNB) infections has led to a global public health challenging due to the bacterial resistance and limited choices of antibiotics. Cefiderocol (CFDC), a novel siderophore cephalosporin possessed unique drug delivery systems and stability to β-lactamases, has the potential to become first-line therapy for most aggressive MDR Gram-negative pathogens infection. However, there have been reports of drug resistance in the course of using CFDC. This study provides an overview of the in-vitro and in-vivo activity of CFDC and potential resistance mechanism was also summarized. In general, CFDC shows excellent activity against a broad range of MDR GNB pathogens including Enterobacteriaceae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. The expressions of metallo-β-lactamases such as inosine 5'-monophosphate (IMP), Verona integron-mediated metallo-β-lactamase (VIM), and New Delhi metallo-β-lactamase (NDM) are associated with a higher resistance rate of CFDC. Carbapenem-resistant phenotype has little effect on the resistance rate, although the acquisition of a particular carbapenemase may affect the susceptibility of the pathogens to CFDC. For potential resistance mechanism, mutations in β-lactamases and TonB-dependent receptors, which assist CFDC entering bacteria, would increase a minimum inhibitory concentration (MIC)90 value of CFDC against MDR pathogens. Since the development of CFDC, resistance during its utilization has been reported thus, prudent clinical applications are still necessary to preserve the activity of CFDC.
Collapse
Affiliation(s)
- Jiahui Yao
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| |
Collapse
|