1
|
Anelli P, Haidukowski M, Ferrara M, Kisikkaya A, Pembeci C, Ozer H, Mulè G, Loi M, Moretti A, Susca A. Monitoring fungi and mycotoxin potential in pistachio nuts of Turkish origin: A snap-shot for climate change scenario. Fungal Biol 2024; 128:2431-2438. [PMID: 39653490 DOI: 10.1016/j.funbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 01/05/2025]
Abstract
Pistachio (Pistacia vera L.) is an economically important tree nut. Due to its nutritional properties and health benefits, it is considered a healthy food and thus widely consumed worldwide. However, fungal contamination of the commodities has received considerable attention because of possible contamination by toxigenic fungi, important source of mycotoxins, resulting from secondary metabolism and hazards to health consumer. Members of the genus Aspergillus, mainly Aspergillus flavus and Aspergillus niger, are reported as occurring most frequently on pistachio nuts, because able to grow in the presence of low amounts of water and to produce mycotoxins (aflatoxins and ochratoxins), that are well known for their harmful health effects on humans. Monitoring the contaminating fungal species is particularly worthy of note also in climate change scenario, allowing to notice changes in fungal population composition through the time. This study aimed to contribute to collect data about fungal population and mycotoxins occurred in pistachio samples collected in Turkey: prevalence of 2 species, A. flavus and Aspergillus tubingensis, was assessed. The A. flavus strains consisted of a mixed population of aflatoxin producers and non-producing strains in vitro, with evidence of a new genotype in gene cluster within strains of aflatoxin non-producing chemotype.
Collapse
Affiliation(s)
- Pamela Anelli
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Asli Kisikkaya
- TUBITAK MRC Life Sciences, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470, Gebze Kocaeli, Turkey
| | - Ceyda Pembeci
- TUBITAK MRC Life Sciences, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470, Gebze Kocaeli, Turkey
| | - Hayrettin Ozer
- TUBITAK MRC Life Sciences, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470, Gebze Kocaeli, Turkey
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Martina Loi
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council, via Amendola, 122/O - 70126 Bari, Italy.
| |
Collapse
|
2
|
Zhou YB, Rezaei-Matehkolaei A, Meijer M, Kraak B, Gerrits van den Ende B, Hagen F, Afzalzadeh S, Kiasat N, Takesh A, Hoseinnejad A, Houbraken J. Aspergillus hubkae, a Novel Species Isolated from a Patient with Probable Invasive Pulmonary Aspergillosis. Mycopathologia 2024; 189:44. [PMID: 38734862 DOI: 10.1007/s11046-024-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/17/2024] [Indexed: 05/13/2024]
Abstract
A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial β-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.
Collapse
Affiliation(s)
- Ya Bin Zhou
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Key Discipline of Pediatrics, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing, China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Martin Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sara Afzalzadeh
- Department of Infectious Diseases, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Kiasat
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Takesh
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akbar Hoseinnejad
- Department of Medical Mycology, School of Medicine, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Bustamante MI, Elfar K, Kuzmenko J, Zaninovich T, Arreguin M, Carachure C, Zhuang G, Michailides TJ, Eskalen A. Reassessing the Etiology of Aspergillus Vine Canker and Summer Bunch Rot of Table Grapes in California. PLANT DISEASE 2024; 108:941-950. [PMID: 37845185 DOI: 10.1094/pdis-06-23-1137-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Fungal taxonomy is in constant flux, and the advent of reliable DNA barcodes has enabled the enhancement of plant pathogen identification accuracy. In California, Aspergillus vine canker (AVC) and summer bunch rot (SBR) are economically important diseases that affect the wood and fruit of grapevines, respectively, and their causal agents are primarily species of black aspergilli (Aspergillus section Nigri). During the last decade, the taxonomy of this fungal group has been rearranged several times using morphological, physiological, and genetic analyses, which resulted in the incorporation of multiple cryptic species that are difficult to distinguish. Therefore, in this study, we aimed to reassess the etiology of AVC and SBR using a combination of morphological observations with phylogenetic reconstructions based on nucleotide sequences of the calmodulin (CaM) gene. Results revealed that the isolates causing AVC from recent isolations corresponded to A. tubingensis, whereas the isolates obtained from initial surveys when the disease was discovered were confirmed as A. niger and A. carbonarius. Similarly, the isolates obtained from table grapes with SBR symptoms and from spore traps placed in those vineyards were identified primarily as A. tubingensis, followed by A. niger and A. carbonarius. Notably, the A. niger isolates formed a subclade with strains previously known as A. welwitschiae, which is a species that was recently synonymized with A. niger. Overall, the most prevalent species was A. tubingensis, which was associated with both AVC and SBR, and representative isolates recovered from AVC-symptomatic wood, berries SBR symptoms, and spore traps were equally pathogenic in healthy wood and berries of 'Red Globe' grapevines. This study also constitutes the first report of A. tubingensis causing AVC and SBR of grapes in California and in the United States.
Collapse
Affiliation(s)
| | - Karina Elfar
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Janet Kuzmenko
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Thomas Zaninovich
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Molly Arreguin
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Carlos Carachure
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - George Zhuang
- University of California Cooperative Extension, Fresno, CA 93710
| | - Themis J Michailides
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
4
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Tian M, Zhang C, Zhang Z, Jiang T, Hu X, Qiu H, Li Z. Aspergillus niger Fermentation Broth Promotes Maize Germination and Alleviates Low Phosphorus Stress. Microorganisms 2023; 11:1737. [PMID: 37512909 PMCID: PMC10384586 DOI: 10.3390/microorganisms11071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aspergillus niger is a type of soil fungus with the ability to dissolve insoluble phosphate and secrete organic metabolites such as citric acid. However, whether cell-free Aspergillus niger fermentation broth (AFB) promotes maize growth and alleviates low-phosphorus stress has not been reported. In this study, we explored their relationship through a hydroponics system. The results indicated that either too low or too high concentrations of AFB may inhibit seed germination potential and germination rate. Under low phosphorus conditions, all physiological indexes (biomass, soluble sugar content, root length, etc.) increased after AFB was applied. A qRT-PCR analysis revealed that the expression of the EXPB4 and KRP1 genes, which are involved in root development, was upregulated, while the expression of the CAT2 and SOD9 genes, which are keys to the synthesis of antioxidant enzymes, was downregulated. The expression of LOX3, a key gene in lipid peroxidation, was down-regulated, consistent with changes in the corresponding enzyme activity. These results indicate that the application of AFB may alleviate the oxidative stress in maize seedlings, reduce the oxidative damage caused by low P stress, and enhance the resistance to low P stress in maize seedlings. In addition, it reveals the potential of A. niger to promote growth and provides new avenues for research on beneficial plant-fungal interactions.
Collapse
Affiliation(s)
- Maoxian Tian
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Changhui Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhi Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Tao Jiang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xiaolan Hu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Hongbo Qiu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhu Li
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Bian C, Kusuya Y, Sklenář F, D’hooge E, Yaguchi T, Ban S, Visagie C, Houbraken J, Takahashi H, Hubka V. Reducing the number of accepted species in Aspergillus series Nigri. Stud Mycol 2022; 102:95-132. [PMID: 36760462 PMCID: PMC9903907 DOI: 10.3114/sim.2022.102.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenář F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.
Collapse
Affiliation(s)
- C. Bian
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Y. Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Japan
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - E. D’hooge
- BCCM/IHEM collection, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - S. Ban
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - H. Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - V. Hubka
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Thitla T, Kumla J, Khuna S, Lumyong S, Suwannarach N. Species Diversity, Distribution, and Phylogeny of Exophiala with the Addition of Four New Species from Thailand. J Fungi (Basel) 2022; 8:766. [PMID: 35893134 PMCID: PMC9331753 DOI: 10.3390/jof8080766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Exophiala is an anamorphic ascomycete fungus in the family Herpotrichiellaceae of the order Chaetothyriales. Exophiala species have been classified as polymorphic black yeast-like fungi. Prior to this study, 63 species had been validated, published, and accepted into this genus. Exophiala species are known to be distributed worldwide and have been isolated in various habitats around the world. Several Exophiala species have been identified as potential agents of human and animal mycoses. However, in some studies, Exophiala species have been used in agriculture and biotechnological applications. Here, we provide a brief review of the diversity, distribution, and taxonomy of Exophiala through an overview of the recently published literature. Moreover, four new Exophiala species were isolated from rocks that were collected from natural forests located in northern Thailand. Herein, we introduce these species as E. lamphunensis, E. lapidea, E. saxicola, and E. siamensis. The identification of these species was based on a combination of morphological characteristics and molecular analyses. Multi-gene phylogenetic analyses of a combination of the internal transcribed spacer (ITS) and small subunit (nrSSU) of ribosomal DNA, along with the translation elongation factor (tef), partial β-tubulin (tub), and actin (act) genes support that these four new species are distinct from previously known species of Exophiala. A full description, illustrations, and a phylogenetic tree showing the position of four new species are provided.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Peng Q, Xiao Y, Zhang S, Zhou C, Xie A, Li Z, Tan A, Zhou L, Xie Y, Zhao J, Wu C, Luo L, Huang J, He T, Sun R. Mutation breeding of Aspergillus niger by atmospheric room temperature plasma to enhance phosphorus solubilization ability. PeerJ 2022; 10:e13076. [PMID: 35341057 PMCID: PMC8953557 DOI: 10.7717/peerj.13076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Background Phosphorus (P) is abundant in soils, including organic and inorganic forms. Nevertheless, most of P compounds cannot be absorbed and used by plants. Aspergillus niger v. Tiegh is a strain that can efficiently degrade P compounds in soils. Methods In this study, A. niger xj strain was mutated using Atmospheric Room Temperature Plasma (ARTP) technology and the strains were screened by Mo-Sb Colorimetry with strong P-solubilizing abilities. Results Compared with the A. niger xj strain, setting the treatment time of mutagenesis to 120 s, four positive mutant strains marked as xj 90-32, xj120-12, xj120-31, and xj180-22 had higher P-solubilizing rates by 50.3%, 57.5%, 55.9%, and 61.4%, respectively. Among them, the xj120-12 is a highly efficient P solubilizing and growth-promoting strain with good application prospects. The growth characteristics such as plant height, root length, and dry and fresh biomass of peanut (Arachis hypogaea L.) increased by 33.5%, 43.8%, 43.4%, and 33.6%, respectively. Besides available P, the chlorophyll and soluble protein contents also vary degrees of increase in the P-solubilizing mutant strains. Conclusions The results showed that the ARTP mutagenesis technology can improve the P solubilization abilities of the A. niger mutant strains and make the biomass of peanut plants was enhanced of mutant strains.
Collapse
Affiliation(s)
- Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Su Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China,Bureau of Agriculture and Rural Affairs, Xixiu District, Anshun, Guizou Province, China
| | - Changwei Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China,Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Aijuan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Lihong Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Jinyi Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Chenglin Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Lei Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Jie Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizou Province, China
| |
Collapse
|