1
|
Wang Y, Li S, Ning C, Yang R, Wu Y, Cheng X, Xu J, Wang Y, Liu F, Zhang Y, Hu S, Xiao Y, Li Z, Zhou Z. The outer membrane protein, OMP71, of Riemerella anatipestifer, mediates adhesion and virulence by binding to CD46 in ducks. Vet Res 2024; 55:138. [PMID: 39407352 PMCID: PMC11481396 DOI: 10.1186/s13567-024-01393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The Riemerella anatipestifer bacterium is known to cause infectious serositis in ducklings. Moreover, its adherence to the host's respiratory mucosa is a critical step in pathogenesis. Membrane cofactor protein (MCP; CD46) is a complement regulatory factor on the surface of eukaryotic cell membranes. Bacteria have been found to bind to this protein on host cells. Outer membrane proteins (OMPs) are necessary for adhesion, colonisation, and pathogenicity of Gram-negative bacteria; however, the mechanism by which R. anatipestifer adheres to duck cells remains unclear. In this study, pull-down assays and LC-MS/MS identified eleven OMPs interacting with duck CD46 (dCD46), with OMP71 exhibiting the strongest binding. The ability of an omp71 gene deletion strain to bind dCD46 is weaker than that of the wild-type strain, suggesting that this interaction is important. Further evidence of this interaction was obtained by synthesising OMP71 using an Escherichia coli recombinant protein expression system. Adhesion and invasion assays and protein and antibody blocking assays confirmed that OMP71 promoted the R. anatipestifer YM strain (RA-YM) adhesion to duck embryo fibroblasts (DEFs) by binding to CD46. Tests of the pathogenicity of a Δomp71 mutant strain of RA-YM on ducks compared to the wild-type parent supported the hypothesis that OMP71 was a key virulence factor of RA-YM. In summary, the finding that R. anatipestifer exploits CD46 to bind to host cells via OMP71 increases our understanding of the molecular mechanism of R. anatipestifer invasion. The finding suggests potential targets for preventing and treating diseases related to R. anatipestifer infection.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jike Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Zhang C, Wang L, Zhao Q, Hou G, Sun X, An R, Li H, Zhu S, Shi Q, Zhang Z. Research Note: Antibiotic resistance and pathogenicity of geese-derived Riemerella anatipestifer isolated from eastern regions of Hebei Province, China. Poult Sci 2024; 103:103517. [PMID: 38350391 PMCID: PMC10874709 DOI: 10.1016/j.psj.2024.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) can cause serositis in multiple poultry species, resulting in significant losses. Although R. anatipestifer-caused infections in ducks have been well established, the literature about this disease in geese is rare. Here, we isolated and identified 56 strains of R. anatipestifer from the eastern regions of Hebei Province, China, and further determined their serotypes, antibiotic resistance, and pathogenicity. A total of 75 strains of causative bacteria were isolated from 70 sick geese with serositis. After Gram staining microscopy, PCR, and 16S rDNA sequence analysis, 56 isolates were identified as members of R. anatipestifer and 19 as Escherichia coli (E. coli). The results of serotyping showed that there were 4 serotypes prevalent in the isolate, including serotype 1 (37/56), serotype 2 (9/56), serotype 11 (8/56), and serotype 13 (2/56). The results of antibiotic susceptibility testing revealed that all 56 R. anatipestifer isolates showed varying degrees of multidrug resistance (MDR). A total of 10 antibiotic resistance genes (ARG) were determined in these isolates. Four isolates of different serotypes were selected for pathogenicity examination, and all were able to reproduce serositis-like symptoms in 15-day-old goslings, with neurological symptoms and a 100% mortality rate. Hemorrhagic congestion of the brain tissue, steatosis of the hepatocytes, and disorganization of some cardiac myofibers were observed in R. anatipestifer-infected geese. All these findings will contribute to our insights into the prevalence characteristics, antibiotic resistance profile, and pathogenicity of R. anatipestifer infection in geese in eastern Hebei Province and provide scientific guidance for the treatment and control of this disease.
Collapse
Affiliation(s)
- Chunxiao Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Lili Wang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Qi Zhao
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Guanxin Hou
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Xinyi Sun
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Rui An
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Hong Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Siping Zhu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066000, China.
| |
Collapse
|
3
|
Chen Y, Li X, Liu Z, Hu M, Ma J, Luo Y, Zhang Q, Li L, Zhao X, Zhao M, Liu W, Liu Y. Genomic analysis and experimental pathogenic characterization of Riemerella anatipestifer isolates from chickens in China. Poult Sci 2024; 103:103497. [PMID: 38346372 PMCID: PMC10867588 DOI: 10.1016/j.psj.2024.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024] Open
Abstract
Waterfowl have a high likelihood of being infected with Riemerella anatipestifer. Although the pathogen is found in domestic ducks, turkeys, geese, and wild birds, there is little information available about the consequences of infection during egg laying and hatching in chickens. Here, we present the first report of a novel sequence type of R. anatipestifer S63 isolated from chickens in China. On the basis of pan-genome analysis, we showed S63's genome occupies a distinct branch with other R. anatipestifer isolates from other hosts. Galleria mellonella larval tests indicated that S63 is less virulent than R. anatipestifer Ra36 isolated from ducks. Ducks and hens are susceptible to S63 infection. There is no mortality rate for chickens or ducks, but adult chickens experience neurological symptoms that reduce egg production and hatching rates. In chickens, S63 might be passed vertically from parents to offspring, resulting in "jelly-like" lifeless embryos. Using quantitative PCR, S63 was detected in the brain, liver, reproductive organs, and embryos. As far as we know, this is the first report of R. anatipestifer in hens, a disease that can reduce egg productivity, lower hatching rates, and produce jelly-like lifeless embryos, and the first report to raise the possibility that hens can be infected by roosters via semen.
Collapse
Affiliation(s)
- Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Xiaojing Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhengjie Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Jinxiang Ma
- Haiyang Dingli Breeding Chicken Co., Ltd, Yantai, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Min Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 23788 P. R. China.
| |
Collapse
|
4
|
Li S, Wang Y, Yang R, Zhu X, Bai H, Deng X, Bai J, Zhang Y, Xiao Y, Li Z, Liu Z, Zhou Z. Outer membrane protein OMP76 of Riemerella anatipestifer contributes to complement evasion and virulence by binding to duck complement factor vitronectin. Virulence 2023; 14:2223060. [PMID: 37326479 PMCID: PMC10281475 DOI: 10.1080/21505594.2023.2223060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in poultry. Pathogenic bacteria recruit host complement factors to resist the bactericidal effect of serum complement. Vitronectin (Vn) is a complementary regulatory protein that inhibits the formation of the membrane attack complex (MAC). Microbes use outer membrane proteins (OMPs) to hijack Vn for complement evasion. However, the mechanism by which R. anatipestifer achieves evasion is unclear. This study aimed to characterise OMPs of R. anatipestifer which interact with duck Vn (dVn) during complement evasion. Far-western assays and comparison of wild-type and mutant strains that were treated with dVn and duck serum demonstrated particularly strong binding of OMP76 to dVn. These data were confirmed with Escherichia coli strains expressing and not expressing OMP76. Combining tertiary structure analysis and homology modelling, truncated and knocked-out fragments of OMP76 showed that a cluster of critical amino acids in an extracellular loop of OMP76 mediate the interaction with dVn. Moreover, binding of dVn to R. anatipestifer inhibited MAC deposition on the bacterial surface thereby enhancing survival in duck serum. Virulence of the mutant strain ΔOMP76 was attenuated significantly relative to the wild-type strain. Furthermore, adhesion and invasion abilities of ΔOMP76 decreased, and histopathological changes showed that ΔOMP76 was less virulent in ducklings. Thus, OMP76 is a key virulence factor of R. anatipestifer. The identification of OMP76-mediated evasion of complement by recruitment of dVn contributes significantly to the understanding of the molecular mechanism by which R. anatipestifer escapes host innate immunity and provides a new target for the development of subunit vaccines.
Collapse
Affiliation(s)
- Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhengfei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Dreyer A, Lenz C, Groß U, Bohne W, Zautner AE. Characterization of Campylobacter jejuni proteome profiles in co-incubation scenarios. Front Microbiol 2023; 14:1247211. [PMID: 38029072 PMCID: PMC10666060 DOI: 10.3389/fmicb.2023.1247211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In dynamic microbial ecosystems, bacterial communication is a relevant mechanism for interactions between different microbial species. When C. jejuni resides in the intestine of either avian or human hosts, it is exposed to diverse bacteria from the microbiome. This study aimed to reveal the influence of co-incubation with Enterococcus faecalis, Enterococcus faecium, or Staphylococcus aureus on the proteome of C. jejuni 81-176 using data-independent-acquisition mass spectrometry (DIA-MS). We compared the proteome profiles during co-incubation with the proteome profile in response to the bile acid deoxycholate (DCA) and investigated the impact of DCA on proteomic changes during co-incubation, as C. jejuni is exposed to both factors during colonization. We identified 1,375 proteins by DIA-MS, which is notably high, approaching the theoretical maximum of 1,645 proteins. S. aureus had the highest impact on the proteome of C. jejuni with 215 up-regulated and 230 down-regulated proteins. However, these numbers are still markedly lower than the 526 up-regulated and 516 down-regulated proteins during DCA exposure. We identified a subset of 54 significantly differentially expressed proteins that are shared after co-incubation with all three microbial species. These proteins were indicative of a common co-incubation response of C. jejuni. This common proteomic response partly overlapped with the DCA response; however, several proteins were specific to the co-incubation response. In the co-incubation experiment, we identified three membrane-interactive proteins among the top 20 up-regulated proteins. This finding suggests that the presence of other bacteria may contribute to increased adherence, e.g., to other bacteria but eventually also epithelial cells or abiotic surfaces. Furthermore, a conjugative transfer regulon protein was typically up-expressed during co-incubation. Exposure to both, co-incubation and DCA, demonstrated that the two stressors influenced each other, resulting in a unique synergistic proteomic response that differed from the response to each stimulus alone. Data are available via ProteomeXchange with identifier PXD046477.
Collapse
Affiliation(s)
- Annika Dreyer
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Zheng X, Xu S, Wang Z, Tao X, Liu Y, Dai L, Li Y, Zhang W. Sifting through the core-genome to identify putative cross-protective antigens against Riemerella anatipestifer. Appl Microbiol Biotechnol 2023; 107:3085-3098. [PMID: 36941438 DOI: 10.1007/s00253-023-12479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Infectious serositis of ducks, caused by Riemerella anatipestifer, is one of the main infectious diseases that harm commercial ducks. Whole-strain-based vaccines with no or few cross-protection were observed between different serotypes of R. anatipestifer, and so far, control of infection is hampered by a lack of effective vaccines, especially subunit vaccines with cross-protection. Since the concept of reverse vaccinology was introduced, it has been widely used to screen for protective antigens in important pathogens. In this study, pan-genome binding reverse vaccinology, an emerging approach to vaccine candidate screening, was used to screen for cross-protective antigens against R. anatipestifer. Thirty proteins were identified from the core-genome as potential cross-protective antigens. Three of these proteins were recombinantly expressed, and their immunoreactivity with five antisera (anti-serotypes 1, 2, 6, 10, and 11) was demonstrated by Western blotting. Our study established a method for high-throughput screening of cross-protective antigens against R. anatipestifer in silico, which will lay the foundation for the development of a cross-protective subunit vaccine controlling R. anatipestifer infection. KEY POINTS: • Pan-genome binding reverse vaccine approach was first established in R. anatipestifer to screen for subunit vaccine candidates. • Thirty potential cross-protective antigens against R. anatipestifer were identified by this method. • The reliability of the method was verified preliminarily by the results of Western blotting of three of these potential antigens.
Collapse
Affiliation(s)
- Xiangkuan Zheng
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sixiang Xu
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuohao Wang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingyu Tao
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250100, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, 16 Xingdan Road, Haikou, 571100, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| | - Wei Zhang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
DEAD Box Protein DhR1 Is a Global Regulator Involved in the Bacterial Fitness and Virulence of Riemerella anatipestifer. J Bacteriol 2023; 205:e0034122. [PMID: 36598230 PMCID: PMC9879107 DOI: 10.1128/jb.00341-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DEAD box proteins perform diverse cellular functions in bacteria. Our group previously reported that the transposon Tn4531 insertion in Riean_0395 (designated dhR1), which encodes a putative DEAD box helicase, attenuated the virulence of R. anatipestifer strain YZb1. Here, we show that, compared to the wild-type (WT) R. anatipestifer strain Yb2, the growth or survival of the ΔdhR1 mutant in tryptic soy broth (TSB) was significantly decreased in response to cold, pH, osmotic stress, ethanol, Triton X-100, and oxidative stress, and the dhR1 deletion significantly reduced biofilm formation and the adhesion capacity to Vero cells, whereas the growth of ΔdhR1 was less impaired in iron-limited TSB. Moreover, the virulence of ΔdhR1 in ducklings was attenuated by about 80-fold, compared to the WT. In addition, a transcriptome analysis showed that the dhR1 deletion in the strain Yb2 affected the expression of 58 upregulated genes and 98 downregulated genes that are responsible for various functions. Overall, our work reveals that the deletion of DhR1 results in a broad effect on the bacterial fitness, biofilm formation, iron utilization, and virulence of R. anatipestifer, which makes it a global regulator. IMPORTANCE R. anatipestifer infection has been a continued and serious problem in many duck farms, but little is known about the mechanism underlying the pathogenesis of R. anatipestifer and how R. anatipestifer adapts to the external environment and thereby persists in duck farms. The results of this study demonstrate that the DEAD box protein DhR1 is required for the tolerance of R. anatipestifer to cold, pH, and other stresses, and it is also necessary for biofilm formation, iron utilization, and virulence in ducklings, demonstrating multiple functions of DhR1.
Collapse
|
8
|
Li J, Zhang Y, Wang Y, Zhang Y, Shi B, Gan L, Yu S, Jia X, Yang K, Li Z. Immunogenicity of live phoP gene deletion strain of Riemerella anatipestifer serotype 1. Poult Sci 2022; 102:102294. [PMID: 36436377 PMCID: PMC9706625 DOI: 10.1016/j.psj.2022.102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Duck infectious serositis is an acute and infectious disease caused by Riemerella anatipestifer (R. anatipestifer) that leads to perihepatitis, pericarditis, meningitis, and airbag inflammation in ducks, which causes serious economic losses to the global duck industry. The phoP/phoR is a novel 2-component signal transduction system first reported in gram-negative bacteria, of which phoP acts as a global regulator and virulence factor. In this study, the phoP gene from the R. anatipestifer YM strain was knocked out using homologous recombination technology and replaced with the spectinomycin resistance gene (Spec). The virulence of the R. anatipestifer YMΔphoP strain was reduced by approximately 47,000 times compared to that of the wild-type R. anatipestifer YM strain. Ducks were immunized with live R. anatipestifer YMΔphoP strain by subcutaneous inoculation at a dose of 106 to 107 CFU (0.2 mL per duck) and challenged with the wild-type R. anatipestifer YM strain 14 days later. The protection rate in the immunized group was 100%. The growth characteristics of ducks in the immunized and negative control groups were normal, and the research demonstrated R. anatipestifer YMΔphoP strain have suitable immunogenicity and protective effects. Thus, the study findings suggest that the novel R. anatipestifer YMΔphoP strain may provide a candidate for the development of a gene deletion activated vaccine against duck infectious serositis.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baolan Shi
- Sinopharm Animal Health Corporation Ltd., Wuhan, 430070, China
| | - Luoxin Gan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China,Corresponding author:
| |
Collapse
|