1
|
Yang X, Zeng X, Huang J, Yang L, Mao S, Chen X, Wang Y, Wei X, Li S. Loop-mediated isothermal amplification linked a nanoparticles-based biosensor for detecting Epstein-Barr virus. Appl Microbiol Biotechnol 2024; 108:91. [PMID: 38212962 PMCID: PMC10784390 DOI: 10.1007/s00253-023-12948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus that maintains a lifelong latent association with B lymphocytes. Here, a rapid and reliable diagnosis platform for detecting EBV infection, employing loop-mediated isothermal amplification (LAMP) combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB) (termed LAMP Amplification Mediated AuNPs-LFB Detection, LAMAD), was developed in the current study. A set of specific LAMP primers targeting the Epstein-Barr nuclear antigen (EBNA) leader protein (EBNA-LP) gene was designed and synthesized. Subsequently, these templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-LAMAD assay. As a result, the limit of detection (LoD) of the EBV-LAMAD assay was 45 copies/reaction. The EBV-LAMAD assay can detect all representative EBV pathogens used in the study, and of note, no cross-reactions were observed with other non-EBV organisms. Moreover, the whole workflow of the EBV-LAMAD assay can be completed within 70 min, including rapid EBV template preparation, EBV-LAMP amplification, and AuNPs-LFB-mediated detection. Taken together, the EBV-LAMAD assay targeting the EBNA-LP gene is a rapid, simplified, sensitive, reliable, and easy-to-use detection protocol that can be used as a competitive potential diagnostic/screening tool for EBV infection in clinical settings, especially in basic laboratories in resource-limited regions. KEY POINTS: • A novel, simplified, and easy-to-use AuNPs-LFB biosensor was designed and prepared. • LAMP combined with an AuNPs-LFB targeting the novel EBNA-LP gene was established. • EBV-LAMAD is a rapid, sensitive, and reliable detection protocol for EBV infection.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, 554399, Guizhou, People's Republic of China
| | - Sha Mao
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, Guizhou, People's Republic of China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
2
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Lai MY, Abdul Hamid MH, Jelip J, Mudin RN, Lau YL. Recombinase-Aided Loop-Mediated Isothermal Amplification on Human Plasmodium knowlesi. Am J Trop Med Hyg 2024; 110:648-652. [PMID: 38412548 PMCID: PMC10993835 DOI: 10.4269/ajtmh.23-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/03/2023] [Indexed: 02/29/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that can amplify specific nucleic acids at a constant temperature (63-65°C) within a short period (<1 hour). In this study, we report the utilization of recombinase-aided LAMP to specifically amplify the 18S sRNA of Plasmodium knowlesi. The method was built on a conventional LAMP assay by inclusion of an extra enzyme, namely recombinase, into the master mixture. With the addition of recombinase into the LAMP assay, the assay speed was executed within a time frame of less than 28 minutes at 65°C. We screened 55 P. knowlesi samples and 47 non-P. knowlesi samples. No cross-reactivity was observed for non-P. knowlesi samples, and the detection limit for recombinase-aided LAMP was one copy for P. knowlesi after LAMP amplification. It has been reported elsewhere that LAMP can be detected through fluorescent readout systems. Although such systems result in considerable limits of detection, the need for sophisticated equipment limits their use. Hence, we used here a colorimetric detection platform for the evaluation of the LAMP assay's performance. This malachite green-based recombinase-aided LAMP assay enabled visualization of results with the naked eye. Negative samples were observed by a change in color from green to colorless, whereas positive samples remained green. Our results demonstrate that the LAMP assay developed here is a convenient, sensitive, and useful diagnostic tool for the rapid detection of knowlesi malaria parasites. This method is suitable for implementation in remote healthcare settings, where centralized laboratory facilities, funds, and clinicians are in short supply.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Jenarun Jelip
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Ministry of Health, Putrajaya, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Huang J, Tong Y, Yang X, Chen Y, Wei X, Chen X, Li J, Li S. Biosensor-Based Multiple Cross Displacement Amplification for the Rapid Detection of Mycobacterium leprae. ACS Infect Dis 2023; 9:1932-1940. [PMID: 37738642 DOI: 10.1021/acsinfecdis.3c00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Leprosy is an ancient disease caused by Mycobacterium leprae (ML) that remains a public health problem in poverty-stricken areas worldwide. Although many ML detection techniques have been used, a rapid and sensitive tool is essential for the early detection and treatment of leprosy. Herein, we developed a rapid ML detection technique by combining multiple cross displacement amplification (MCDA) with a nanoparticle-based lateral flow biosensor (LFB), termed ML-MCDA-LFB. MCDA induced a rapid isothermal reaction using specific primers targeting the RLEP gene, and the LFB enabled instant visual amplicon detection. The pure genomic DNA of ML and nucleic acids from various pathogens were employed to evaluate and optimize the ML-MCDA-LFB assay. The optimal conditions for ML-MCDA-LFB were 68 °C and 35 min, respectively. The limit of detection for pure ML genomic DNA was 150 fg per vessel, and the specificity of detection was 100% for the experimental strains. Additionally, the entire detection process could be performed within 40 min, including the isothermal amplification (35 min) and result confirmation (1-2 min). Hence, the ML-MCDA-LFB assay was shown to be a rapid, sensitive, and visual method for detecting ML and could be used as a potential tool for early clinical diagnosis and field screening of leprosy.
Collapse
Affiliation(s)
- Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Yi Tong
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, P. R. China
| | - Jinlan Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, P. R. China
| |
Collapse
|
5
|
Zeng X, Yang X, Yang L, Yi X, Chen X, Huang J, Wang Y, Li S. A modified multiple cross displacement amplification linked with a gold nanoparticle biosensor for the detection of Epstein-Barr virus in clinical applications. Front Microbiol 2023; 14:1268572. [PMID: 37886077 PMCID: PMC10598869 DOI: 10.3389/fmicb.2023.1268572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV), a double-stranded DNA virus belonging to the family Herpesviridae, infects more than 95% of healthy adults by attacking the host immune system. Here, a novel detection protocol, utilizing the modified multiple cross displacement amplification (MCDA) technique combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB), was devised and developed to detect EBV infection (termed EBV-MCDA-LFB assay). Ten MCDA primers targeting the EBNA-LP gene were designed, including CP1* primers modified with 6-carboxyfluorescein (FAM) and D1* primers modified with biotin. Then, nucleic acid templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-MCDA-LFB assay. As a result, the lowest concentration of EBNA-plasmids, which can be detected by MCDA-LFB assay with an optimal reaction condition of 67°C for 30 min, was 10 copies/reaction. Here, the MCDA-LFB assay can detect all EBV pathogens used in the study, and no cross-reactions with non-EBV organisms were observed. Meanwhile, the entire detection workflow of the EBV-MCDA-LFB assay for whole blood samples, including DNA template preparation (25 min), EBV-MCDA amplification (30 min), and AuNPs-LFB-mediated validation (2-5 min), can be completed within 1 h. Taken together, the EBV-MCDA-LFB assay established in the current study is a rapid, simplified, sensitive, specific, and easy-to-obtain technique that can be used as a screening or diagnostic tool for EBV infection in clinical applications, especially in resource-poor regions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, Guizhou, China
| | - Xu Yi
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Soni A, Dahiya B, Sheoran A, Kumar V, Guliani A, Kumar N, Hooda V, Yadav A, Nehra K, Mehta PK. Diagnosis of pleural tuberculosis by multi-targeted loop-mediated isothermal amplification assay based on SYBR Green I reaction: comparison with GeneXpert® MTB/RIF assay. Expert Rev Respir Med 2023; 17:1079-1089. [PMID: 38058175 DOI: 10.1080/17476348.2023.2292738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Diagnosis of pleural tuberculosis (TB) is tedious owing to its close resemblance with malignant pleural effusion and sparse bacterial load in clinical specimens. There is an immediate need to design a rapid and dependable diagnostic test to prevent unnecessary morbidity/mortality. RESEARCH DESIGN AND METHODS A multi-targeted loop-mediated isothermal amplification (MT-LAMP) was deliberated using mpt64 and IS6110 to diagnose pleural TB within pleural fluids/biopsies. MT-LAMP products were analyzed by gel-based and visual detection methods, viz. SYBR Green I, SYBR Green I+deoxyuridine triphosphate uracil-N-glycosylase (dUTP-UNG), and dry methyl green reactions. RESULTS In a pilot study, while assessing pleural TB/non-TB control subjects (n = 40), both SYBR Green I+dUTP-UNG/gel-based MT-LAMP assays exhibited better sensitivity/specificity than SYBR Green I and dry methyl green MT-LAMP. Since it is facile to work with SYBR Green I+dUTP-UNG than gel-based MT-LAMP, we validated the performance of SYBR Green I+dUTP-UNG in a higher number of specimens (n = 97), which revealed somewhat higher sensitivity (85.2 vs. 81.5%) and specificity (97.7 vs. 90.7%) than SYBR Green I MT-LAMP. Furthermore, the sensitivity attained by SYBR Green I+dUTP-UNG MT-LAMP was significantly higher (p < 0.001) than GeneXpert. CONCLUSIONS Our SYBR Green I+dUTP-UNG MT-LAMP is a simple and reliable method to diagnose pleural TB, which may translate into a point-of-care test.
Collapse
Affiliation(s)
- Aishwarya Soni
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology (DCRUST), Murthal, Sonipat, India
| | - Bhawna Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
- Microbiology Department, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, India
| | - Abhishek Sheoran
- Department of Statistics, Ramanujan College, University of Delhi, New Delhi, India
| | - Vipul Kumar
- Department of TB & Respiratory Medicine, University of Health Sciences (UHS), Rohtak, India
| | - Astha Guliani
- Department of TB & Respiratory Medicine, University of Health Sciences (UHS), Rohtak, India
| | - Nitin Kumar
- Centre for Medical Biotechnology, MDU, Rohtak, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
| | | | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology (DCRUST), Murthal, Sonipat, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
- Microbiology Department, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, India
| |
Collapse
|
7
|
Jia N, Wang C, Liu X, Huang X, Xiao F, Fu J, Sun C, Xu Z, Wang G, Zhou J, Wang Y. A CRISPR-Cas12a-based platform for ultrasensitive rapid highly specific detection of Mycobacterium tuberculosis in clinical application. Front Cell Infect Microbiol 2023; 13:1192134. [PMID: 37287467 PMCID: PMC10242030 DOI: 10.3389/fcimb.2023.1192134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (MTB), is the second leading cause of death after COVID-19 pandemic. Here, we coupled multiple cross displacement amplification (MCDA) technique with CRISPR-Cas12a-based biosensing system to design a novel detection platform for tuberculosis diagnosis, termed MTB-MCDA-CRISPR. MTB-MCDA-CRISPR pre-amplified the specific sdaA gene of MTB by MCDA, and the MCDA results were then decoded by CRISPR-Cas12a-based detection, resulting in simple visual fluorescent signal readouts. A set of standard MCDA primers, an engineered CP1 primer, a quenched fluorescent ssDNA reporter, and a gRNA were designed targeting the sdaA gene of MTB. The optimal temperature for MCDA pre-amplification is 67°C. The whole experiment process can be completed within one hour, including sputum rapid genomic DNA extraction (15 minutes), MCDA reaction (40 minutes), and CRISPR-Cas12a-gRNA biosensing process (5 minutes). The limit of detection (LoD) of the MTB-MCDA-CRISPR assay is 40 fg per reaction. The MTB-MCDA-CRISPR assay does not cross reaction with non-tuberculosis mycobacterium (NTM) strains and other species, validating its specificity. The clinical performance of MTB-MCDA-CRISPR assay was higher than that of the sputum smear microscopy test and comparable to that of Xpert method. In summary, the MTB-MCDA-CRISPR assay is a promising and effective tool for tuberculosis infection diagnosis, surveillance and prevention, especially for point-of-care (POC) test and field deployment in source-limited regions.
Collapse
Affiliation(s)
- Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chaohong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xiaming Liu
- The Second Department of Geriatrics, Handan Central Hospital, Handan, Hebei, China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Xu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
8
|
Yang X, Huang J, Chen Y, Ying X, Tan Q, Chen X, Zeng X, Lei S, Wang Y, Li S. Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Mycobacterium tuberculosis Complex in Clinical Settings. Microbiol Spectr 2023; 11:e0347522. [PMID: 36975805 PMCID: PMC10100757 DOI: 10.1128/spectrum.03475-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease with high mortality caused by the Mycobacterium tuberculosis complex (MTC). Its clinical symptoms include a prolonged cough with mucus, pleuritic chest pain, hemoptysis, etc., and predominant complications such as tuberculous meningitis and pleural effusion. Thus, developing rapid, ultrasensitive, and highly specific detection techniques plays an important role in controlling TB. Here, we devised CRISPR/CRISPR-associated 12b nuclease (CRISPR/Cas12b)-based multiple cross displacement amplification technique (CRISPR-MCDA) targeting the IS6110 sequence and used it to detect MTC pathogens. A newly engineered protospacer adjacent motif (PAM) site (TTTC) was modified in the linker region of the CP1 primer. In the CRISPR-MCDA system, the exponentially amplified MCDA amplicons with the PAM sites can guide the Cas12b/gRNA complex to quickly and accurately recognize its target regions, which successfully activates the CRISPR/Cas12b effector and enables ultrafast trans-cleavage of single-stranded DNA reporter molecules. The limit of detection of the CRISPR-MCDA assay was 5 fg/μL of genomic DNA extracted from the MTB reference strain H37Rv. The CRISPR-MCDA assay successfully detected all examined MTC strains and there was no cross-reaction with non-MTC pathogens, confirming that its specificity is 100%. The entire detection process can be completed within 70 min using real-time fluorescence analysis. Moreover, visualization detection (under UV light) was also designed to verify the results, eliminating the use of specialized instruments. In conclusion, the CRISPR-MCDA assay established in this report can be used as a valuable detection technique for MTC infection. IMPORTANCE The Mycobacterium tuberculosis complex pathogen is a crucial infectious agent of tuberculosis. Hence, improving the capability of MTC detection is one of the most urgently required strategies for preventing and controlling TB. In this report, we successfully developed and implemented CRISPR/Cas12b-based multiple cross displacement amplification targeting the IS6110 sequence to detect MTC pathogens. These results demonstrated that the CRISPR-MCDA assay developed in this study was a rapid, ultrasensitive, highly specific, and readily available method which can be used as a valuable diagnostic tool for MTC infection in clinical settings.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xu Chen
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoyan Zeng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Shiguang Lei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
9
|
Yang X, Chen X, Huang J, Chen Y, Zheng W, Chen W, Chen H, Lei S, Li S. Ultrafast, One-Step, Label-Based Biosensor Diagnosis Platform for the Detection of Mycobacterium tuberculosis in Clinical Applications. ACS Infect Dis 2023; 9:762-772. [PMID: 36926845 DOI: 10.1021/acsinfecdis.2c00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by the etiological agent Mycobacterium tuberculosis (MTB). Because the majority of TB patients come from poor economic backgrounds, the development of a simple, specific, low-cost, and highly sensitive detection method for the pathogen is extremely important for the prevention and treatment of this disease. In the current study, an efficient detection method for visual, rapid, and highly sensitive detection of MTB utilizing multiplex loop-mediated isothermal amplification combined with a label-based lateral flow immunoassay biosensor (mLAMP-LFIA) was developed. Three specific primer sets targeting the MTB genes IS6110 and mpb64 were successfully designed and synthesized for the LAMP assay. The optimal reaction conditions for the mLAMP-LFIA assay were confirmed to be 67 °C for 40 min. The mLAMP amplicons were intuitively verified using the LFIA biosensor within 5 min. The entire process, including clinical sample processing, amplification reaction, and product verification, was completed within 80 min. The limit of detection of the mLAMP-LFIA assay established in the current study was 100 fg per reaction for the genomic DNA of MTB H37Rv. The analytical specificity of the mLAMP-LFIA assay was one hundred percent, and no cross-reactions with non-target strains were detected. Compared with the GeneXpert test, the sensitivity of mLAMP-LFIA for 148 clinical specimens was 100% (97/97), and the specificity was 98.04% (50/51) in the preliminary evaluation of the clinical application. Hence, the mLAMP-LFIA method, targeting the IS6110 and mpb64 genes, is an ultrafast, one-step, low-cost, and highly sensitive detection method that could be used as a screening and/or diagnostic tool for MTB in the clinical setting, basic science laboratories, and especially in resource-poor regions.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou, P. R. China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Wenlin Zheng
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Wei Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Huijuan Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Shiguang Lei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, P. R. China
| |
Collapse
|
10
|
Huang J, Yang X, Ren L, Jiang W, Huang Y, Liu Y, Liu C, Chen X, Li S. A novel, ultrafast, ultrasensitive diagnosis platform for the detection of SARS-COV-2 using restriction endonuclease-mediated reverse transcription multiple cross displacement amplification. J Med Virol 2023; 95:e28444. [PMID: 36579774 PMCID: PMC9880628 DOI: 10.1002/jmv.28444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Though many methods have been used for detecting SARS-COV-2, development of an ultrafast and highly sensitive detection strategy to screen and/or diagnose suspected cases in the population, especially early-stage patients with low viral load, is significant for the prevention and treatment of COVID-19. In this study, a novel restriction endonuclease-mediated reverse transcription multiple cross displacement amplification (MCDA) combined with real-time fluorescence analysis (rRT-MCDA) was successfully established and performed to diagnose COVID-19 infection (COVID-19 rRT-MCDA). Two sets of specific SARS-COV-2 rRT-MCDA primers targeting opening reading frame 1a/b (ORF1ab) and nucleoprotein (NP) genes were designed and modified according to the reaction mechanism. The SARS-COV-2 rRT-MCDA test was optimized and evaluated using various pathogens and clinical samples. The optimal reaction condition of SARS-COV-2 rRT-MCDA assay was 65°C for 36 min. The SARS-COV-2 rRT-MCDA limit of detection (LoD) was 6.8 copies per reaction. Meanwhile, the specificity of SARS-COV-2 rRT-MCDA assay was 100%, and there was no cross-reaction with nucleic acids of other pathogens. In addition, the whole detection process of SARS-COV-2 rRT-MCDA, containing the RNA template processing (15 min) and real-time amplification (36 min), can be accomplished within 1 h. The SARS-COV-2 rRT-MCDA test established in the current report is a novel, ultrafast, ultrasensitive, and highly specific detection method, which can be performed as a valuable screening and/or diagnostic tool for COVID-19 in clinical application.
Collapse
Affiliation(s)
- Junfei Huang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina,Public Health SchoolGuizhou Medical UniversityGuiyangGuizhouChina
| | - Lijuan Ren
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Weijia Jiang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Yan Huang
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Ying Liu
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Chunting Liu
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina
| | - Xu Chen
- The Second Affiliated HospitalGuizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and PreventionGuiyangGuizhouChina,Public Health SchoolGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
11
|
Yang X, Wang Y, Liu Y, Huang J, Tan Q, Ying X, Hu Y, Li S. A Label-Based Polymer Nanoparticles Biosensor Combined with Loop-Mediated Isothermal Amplification for Rapid, Sensitive, and Highly Specific Identification of Brucella abortus. Front Bioeng Biotechnol 2021; 9:758564. [PMID: 34869267 PMCID: PMC8636779 DOI: 10.3389/fbioe.2021.758564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/26/2021] [Indexed: 12/04/2022] Open
Abstract
Brucella abortus (B. abortus), an important zoonotic pathogen in Brucella spp., is the major causative agent of abortion in cattle (namely, bovine brucellosis). Currently, although the isolation and identification of the Brucella abortus were commonly accepted as the gold standard method, it cannot meet the requirements for early diagnostic strategies. Conventional PCR techniques and immunological tests can realize rapid detection of B. abortus, but the demands for PCR thermal cyclers and/or specific antibodies hinder their application in basic laboratories. Thus, rapid, sensitive, and specific diagnostic strategies are essential to prevent and control the spread of the bovine brucellosis. In this work, a novel detection method for the rapid identification of B. abortus, which uses loop-mediated isothermal amplification (LAMP) combined with a label-based polymer nanoparticles lateral flow immunoassay biosensor (LFIA), was established. One set of specific B. abortus-LAMP primers targeting the BruAb2_0168 gene was designed by the online LAMP primer design tool. The B. abortus-LAMP-LFIA assay was optimized and evaluated using various pathogens and whole blood samples. The optimal amplification temperature and time for B. abortus-LAMP-LFIA were determined to be 65°C and 50 min, respectively. The B. abortus-LAMP-LFIA method limit of detection (LoD) was 100 fg per reaction for pure genomic DNA of B. abortus. Meanwhile, the detection specificity was 100%, and there was no cross-reactivity for other Brucella members and non-Brucella strains. Furthermore, the entire procedure, including the DNA preparation for whole blood samples (30 min), isothermal incubation (50 min), and LFIA detection (2–5 min), can be completed in approximately 85 min. Thus, the B. abortus-LAMP-LFIA assay developed was a simple, rapid, sensitive, and reliable detection technique, which can be used as a screening and/or diagnostic tool for B. abortus in the field and basic laboratories.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China.,School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yue Wang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Ying Liu
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China.,School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China.,School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yong Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China.,School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Huang J, Xiao Z, Yang X, Chen X, Wang X, Chen Y, Zheng W, Chen W, Chen H, Li S. Two target genes based multiple cross displacement amplification combined with a lateral flow biosensor for the detection of Mycobacterium tuberculosis complex. BMC Microbiol 2021; 21:267. [PMID: 34607556 PMCID: PMC8491432 DOI: 10.1186/s12866-021-02328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculosis (TB) is a serious chronic infectious disease caused by Mycobacterium tuberculosis complex (MTBC). Hence, the development of a novel, simple, rapid and sensitive method to detect MTBC is of great significance for the prevention and treatment of TB. Results In this study, multiple cross displacement amplification (MCDA) combined with a nanoparticle-based lateral flow biosensor (LFB) was developed to simultaneously detect two target genes (IS6110 and mpb64) of MTBC (MCDA-LFB). One suite of specific MCDA primers designed for the IS6110 and mpb64 genes was validated using genomic DNA extracted from the reference strain H37Rv. The MCDA amplicons were analyzed using a real-time turbidimeter, colorimetric indicator (malachite green, MG) and LFBs. The optimal amplification temperature and time were confirmed, and the MCDA-LFB method established in the current report was evaluated by detecting various pathogens (i.e., reference strains, isolates and clinical sputum samples). The results showed that the two sets of MCDA primers targeting the IS6110 and mpb64 genes could effectively detect MTBC strains. The optimal reaction conditions for the MCDA assay were determined to be 67 °C for 35 min. The MCDA assay limit of detection (LoD) was 100 fg per reaction for pure genomic DNA. The specificity of the MCDA-LFB assay was 100%, and there were no cross-reactions for non-MTBC strains. For sputum samples and MTBC strain detection, the positive rate of MCDA-LFB for the detection of MTBC strains was consistent with seminested automatic real-time PCR (Xpert MTB/RIF) and higher than acid-fast staining (AFS) and culture assays when used for sputum samples. The MCDA-LFB assay was a rapid tool, and the whole procedure for MCDA-LFB, including DNA template preparation, MCDA reaction and amplification product analysis, was completed within 70 min. Conclusion The MCDA-LFB assay targeting the IS6110 and mpb64 genes is a simple, rapid, sensitive and reliable detection method, and it has potential significance for the prevention and treatment of TB.
Collapse
Affiliation(s)
- Junfei Huang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ziyu Xiao
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xinggui Yang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xiaojuan Wang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Yijiang Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wenlin Zheng
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wei Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Huijuan Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shijun Li
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China. .,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|