1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Beniston E, Skittrall JP. Locations and structures of influenza A virus packaging-associated signals and other functional elements via an in silico pipeline for predicting constrained features in RNA viruses. PLoS Comput Biol 2024; 20:e1012009. [PMID: 38648223 PMCID: PMC11034665 DOI: 10.1371/journal.pcbi.1012009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Influenza A virus contains regions of its segmented genome associated with ability to package the segments into virions, but many such regions are poorly characterised. We provide detailed predictions of the key locations within these packaging-associated regions, and their structures, by applying a recently-improved pipeline for delineating constrained regions in RNA viruses and applying structural prediction algorithms. We find and characterise other known constrained regions within influenza A genomes, including the region associated with the PA-X frameshift, regions associated with alternative splicing, and constraint around the initiation motif for a truncated PB1 protein, PB1-N92, associated with avian viruses. We further predict the presence of constrained regions that have not previously been described. The extra characterisation our work provides allows investigation of these key regions for drug target potential, and points towards determinants of packaging compatibility between segments.
Collapse
Affiliation(s)
- Emma Beniston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
3
|
Girard J, Jakob C, Toews LK, Fuchs J, Pohlmann A, Franzke K, Kolesnikova L, Jeney C, Beer M, Bron P, Schwemmle M, Bolte H. Disruption of influenza virus packaging signals results in various misassembled genome complexes. J Virol 2023; 97:e0107623. [PMID: 37811996 PMCID: PMC10617545 DOI: 10.1128/jvi.01076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.
Collapse
Affiliation(s)
- Justine Girard
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Celia Jakob
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Kathrin Toews
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Patrick Bron
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Jakob C, Lovate GL, Desirò D, Gießler L, Smyth R, Marquet R, Lamkiewicz K, Marz M, Schwemmle M, Bolte H. Sequential disruption of SPLASH-identified vRNA-vRNA interactions challenges their role in influenza A virus genome packaging. Nucleic Acids Res 2023; 51:6479-6494. [PMID: 37224537 PMCID: PMC10325904 DOI: 10.1093/nar/gkad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
A fundamental step in the influenza A virus (IAV) replication cycle is the coordinated packaging of eight distinct genomic RNA segments (i.e. vRNAs) into a viral particle. Although this process is thought to be controlled by specific vRNA-vRNA interactions between the genome segments, few functional interactions have been validated. Recently, a large number of potentially functional vRNA-vRNA interactions have been detected in purified virions using the RNA interactome capture method SPLASH. However, their functional significance in coordinated genome packaging remains largely unclear. Here, we show by systematic mutational analysis that mutant A/SC35M (H7N7) viruses lacking several prominent SPLASH-identified vRNA-vRNA interactions involving the HA segment package the eight genome segments as efficiently as the wild-type virus. We therefore propose that the vRNA-vRNA interactions identified by SPLASH in IAV particles are not necessarily critical for the genome packaging process, leaving the underlying molecular mechanism elusive.
Collapse
Affiliation(s)
- Celia Jakob
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriel L Lovate
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
| | - Daniel Desirò
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1QW, UK
| | - Lara Gießler
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
High-throughput droplet-based analysis of influenza A virus genetic reassortment by single-virus RNA sequencing. Proc Natl Acad Sci U S A 2023; 120:e2211098120. [PMID: 36730204 PMCID: PMC9963642 DOI: 10.1073/pnas.2211098120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process. Customized barcoded primers for targeted viral RNA sequencing enabled the analysis of 18,422 viral genotypes resulting from coinfection with two circulating human H1N1pdm09 and H3N2 IAVs. Results were highly reproducible, confirmed that genetic reassortment is far from random, and allowed accurate quantification of reassortants including rare events. In total, 159 out of the 254 possible reassortant genotypes were observed but with widely varied prevalence (from 0.038 to 8.45%). In cells where eight segments were detected, all 112 possible pairwise combinations of segments were observed. The inclusion of data from single cells where less than eight segments were detected allowed analysis of pairwise cosegregation between segments with very high confidence. Direct coupling analysis accurately predicted the fraction of pairwise segments and full genotypes. Overall, our results indicate that a large proportion of reassortant genotypes can emerge upon coinfection and be detected over a wide range of frequencies, highlighting the power of our tool for systematic and exhaustive monitoring of the reassortment potential of IAVs.
Collapse
|
6
|
Jakob C, Paul-Stansilaus R, Schwemmle M, Marquet R, Bolte H. The influenza A virus genome packaging network - complex, flexible and yet unsolved. Nucleic Acids Res 2022; 50:9023-9038. [PMID: 35993811 PMCID: PMC9458418 DOI: 10.1093/nar/gkac688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
The genome of influenza A virus (IAV) consists of eight unique viral RNA segments. This genome organization allows genetic reassortment between co-infecting IAV strains, whereby new IAVs with altered genome segment compositions emerge. While it is known that reassortment events can create pandemic IAVs, it remains impossible to anticipate reassortment outcomes with pandemic prospects. Recent research indicates that reassortment is promoted by a viral genome packaging mechanism that delivers the eight genome segments as a supramolecular complex into the virus particle. This finding holds promise of predicting pandemic IAVs by understanding the intermolecular interactions governing this genome packaging mechanism. Here, we critically review the prevailing mechanistic model postulating that IAV genome packaging is orchestrated by a network of intersegmental RNA-RNA interactions. Although we find supporting evidence, including segment-specific packaging signals and experimentally proposed RNA-RNA interaction networks, this mechanistic model remains debatable due to a current shortage of functionally validated intersegmental RNA-RNA interactions. We speculate that identifying such functional intersegmental RNA-RNA contacts might be hampered by limitations of the utilized probing techniques and the inherent complexity of the genome packaging mechanism. Nevertheless, we anticipate that improved probing strategies combined with a mutagenesis-based validation could facilitate their discovery.
Collapse
Affiliation(s)
| | | | - Martin Schwemmle
- To whom correspondence should be addressed. Tel: +49 761 203 6526; Fax: +49 761 203 6626;
| | - Roland Marquet
- Correspondence may also be addressed to Roland Marquet. Tel: +33 3 88 41 70 54; Fax: +33 3 88 60 22 18;
| | - Hardin Bolte
- Institute of Virology, Medical Center – University of Freiburg, 79104 Freiburg, Germany,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
7
|
Bu L, Chen B, Xing L, Cai X, Liang S, Zhang L, Wang X, Song W. Generation of a pdmH1N1 2018 Influenza A Reporter Virus Carrying a mCherry Fluorescent Protein in the PA Segment. Front Cell Infect Microbiol 2022; 11:827790. [PMID: 35127568 PMCID: PMC8811159 DOI: 10.3389/fcimb.2021.827790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen associated with significant morbidity and mortality worldwide. Through serial passage in mice, we generated a recombinant pdmH1N1 2009 IAV, A/Guangdong/GLW/2018 (GLW/18-MA), which encodes an mCherry gene fused to the C-terminal of a polymerase acidic (PA) segment and demonstrated comparable growth kinetics to the wild-type. Nine mutations were identified in the GLW/18-MA genome: PA (I61M, E351G, and G631S), NP (E292G), HA1 (T164I), HA2 (N117S and P160S), NA (W61R), and NEP (K44R). The recombinant IAV reporter expresses mCherry, a red fluorescent protein, at a high level and maintains its genetic integrity after five generations of serial passages in Madin-Darby Canine Kidney cells (MDCK) cells. Moreover, the imaging is noninvasive and permits the monitoring of infection in living mice. Treatment with oseltamivir or baicalin followed by infection with the reporter IAV led to a decrease in fluorescent protein signal in living mice. This result demonstrates that the IAV reporter virus is a powerful tool to study viral pathogenicity and transmission and to develop and evaluate novel anti-viral drugs, inhibitors, and vaccines in the future.
Collapse
Affiliation(s)
- Ling Bu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boqian Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuhua Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Zhang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|