1
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
2
|
Brunet M, Le Duff N, Rigaut-Jalabert F, Romac S, Barbeyron T, Thomas F. Seasonal dynamics of a glycan-degrading flavobacterial genus in a tidally mixed coastal temperate habitat. Environ Microbiol 2023; 25:3192-3206. [PMID: 37722696 DOI: 10.1111/1462-2920.16505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Coastal marine habitats constitute hotspots of primary productivity. In temperate regions, this is due both to massive phytoplankton blooms and dense colonisation by macroalgae that mostly store carbon as glycans, contributing substantially to local and global carbon sequestration. Because they control carbon and energy fluxes, algae-degrading microorganisms are crucial for coastal ecosystem functions. Environmental surveys revealed consistent seasonal dynamics of alga-associated bacterial assemblages, yet resolving what factors regulate the in situ abundance, growth rate and ecological functions of individual taxa remains a challenge. Here, we specifically investigated the seasonal dynamics of abundance and activity for a well-known alga-degrading marine flavobacterial genus in a tidally mixed coastal habitat of the Western English Channel. We show that members of the genus Zobellia are a stable, low-abundance component of healthy macroalgal microbiota and can also colonise particles in the water column. This genus undergoes recurring seasonal variations with higher abundances in winter, significantly associated to biotic and abiotic variables. Zobellia can become a dominant part of bacterial communities on decaying macroalgae, showing a strong activity and high estimated in situ growth rates. These results provide insights into the seasonal dynamics and environmental constraints driving natural populations of alga-degrading bacteria that influence coastal carbon cycling.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | | | - Sarah Romac
- Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin (AD2M)-UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
3
|
Barili S, Bernetti A, Sannino C, Montegiove N, Calzoni E, Cesaretti A, Pinchuk I, Pezzolla D, Turchetti B, Buzzini P, Emiliani C, Gigliotti G. Impact of PVC microplastics on soil chemical and microbiological parameters. ENVIRONMENTAL RESEARCH 2023; 229:115891. [PMID: 37059323 DOI: 10.1016/j.envres.2023.115891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) are emerging pollutants whose occurrence is a global problem in natural ecosystems including soil. Among MPs, polyvinyl chloride (PVC) is a well-known polymer with remarkable resistance to degradation, and because its recalcitrant nature serious environmental concerns are created during manufacturing and waste disposal. The effect of PVC (0.021% w/w) on chemical and microbial parameters of an agricultural soil was tested by a microcosm experiment at different incubation times (from 3 to 360 days). Among chemical parameters, soil CO2 emission, fluorescein diacetate (FDA) activity, total organic C (TOC), total N, water extractable organic C (WEOC), water extractable N (WEN) and SUVA254 were considered, while the structure of soil microbial communities was studied at different taxonomic levels (phylum and genus) by sequencing bacterial 16S and fungal ITS2 rDNA (Illumina MiSeq). Although some fluctuations were found, chemical and microbiological parameters exhibited some significant trends. Significant (p < 0.05) variations of soil CO2 emission, FDA hydrolysis, TOC, WEOC and WEN were found in PVC-treated soils over different incubation times. Considering the structure of soil microbial communities, the presence of PVC significantly (p < 0.05) affected the abundances of specific bacterial and fungal taxa: Candidatus_Saccharibacteria, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroides among bacteria, and Basidiomycota, Mortierellomycota and Ascomycota among fungi. After one year of experiment, a reduction of the number and the dimensions of PVC was detected supposing a possible role of microorganisms on PVC degradation. The abundance of both bacterial and fungal taxa at phylum and genus level was also affected by PVC, suggesting that the impact of this polymer could be taxa-dependent.
Collapse
Affiliation(s)
- Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Alessandro Bernetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy.
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| |
Collapse
|
4
|
Parchemin C, Raviglione D, Mejait A, Sasal P, Faliex E, Clerissi C, Tapissier-Bontemps N. Antibacterial Activities and Life Cycle Stages of Asparagopsis armata: Implications of the Metabolome and Microbiome. Mar Drugs 2023; 21:363. [PMID: 37367688 PMCID: PMC10301895 DOI: 10.3390/md21060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The red alga Asparagopsis armata is a species with a haplodiplophasic life cycle alternating between morphologically distinct stages. The species is known for its various biological activities linked to the production of halogenated compounds, which are described as having several roles for the algae such as the control of epiphytic bacterial communities. Several studies have reported differences in targeted halogenated compounds (using gas chromatography-mass spectrometry analysis (GC-MS)) and antibacterial activities between the tetrasporophyte and the gametophyte stages. To enlarge this picture, we analysed the metabolome (using liquid chromatography-mass spectrometry (LC-MS)), the antibacterial activity and the bacterial communities associated with several stages of the life cycle of A. armata: gametophytes, tetrasporophytes and female gametophytes with developed cystocarps. Our results revealed that the relative abundance of several halogenated molecules including dibromoacetic acid and some more halogenated molecules fluctuated depending on the different stages of the algae. The antibacterial activity of the tetrasporophyte extract was significantly higher than that of the extracts of the other two stages. Several highly halogenated compounds, which discriminate algal stages, were identified as candidate molecules responsible for the observed variation in antibacterial activity. The tetrasporophyte also harboured a significantly higher specific bacterial diversity, which is associated with a different bacterial community composition than the other two stages. This study provides elements that could help in understanding the processes that take place throughout the life cycle of A. armata with different potential energy investments between the development of reproductive elements, the production of halogenated molecules and the dynamics of bacterial communities.
Collapse
Affiliation(s)
- Christelle Parchemin
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| | - Delphine Raviglione
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| | - Anouar Mejait
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| | - Pierre Sasal
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| | - Elisabeth Faliex
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110 UPVD-CNRS, Université de Perpignan-Via Domitia, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France;
| | - Camille Clerissi
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| | - Nathalie Tapissier-Bontemps
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), Ecole Pratique des Hautes Etudes (EPHE), Université PSL, UPVD, CNRS, UAR 3278, 52 Av. Paul Alduy, CEDEX, 66860 Perpignan, France; (C.P.); (D.R.); (A.M.); (P.S.); (C.C.)
| |
Collapse
|
5
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Grigorian E, Roret T, Czjzek M, Leblanc C, Delage L. X-ray structure and mechanism of ZgHAD, a l-2-haloacid dehalogenase from the marine Flavobacterium Zobellia galactanivorans. Protein Sci 2023; 32:e4540. [PMID: 36502283 PMCID: PMC9794022 DOI: 10.1002/pro.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l-2-haloacid dehalogenase (l-2-HAD) from the marine Bacteroidetes Zobellia galactanivorans DsijT (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l-2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l-2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l-2-HAD.
Collapse
Affiliation(s)
- Eugénie Grigorian
- Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)RoscoffFrance
| | - Thomas Roret
- Station Biologique de Roscoff (SBR), CNRS FR2424Sorbonne UniversitéRoscoffFrance
| | - Mirjam Czjzek
- Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)RoscoffFrance
| | - Catherine Leblanc
- Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)RoscoffFrance
| | - Ludovic Delage
- Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M)RoscoffFrance
| |
Collapse
|
7
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|