1
|
Hussein M, Liu Y, Vink M, Kroon PZ, Das AT, Berkhout B, Herrera-Carrillo E. Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102278. [PMID: 39220269 PMCID: PMC11364014 DOI: 10.1016/j.omtn.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.
Collapse
Affiliation(s)
- Mouraya Hussein
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ye Liu
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Monique Vink
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Atze T. Das
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Rosignoli S, Lustrino E, Conci A, Fabrizi A, Rinaldo S, Latella M, Enzo E, Prosseda G, De Rosa L, De Luca M, Paiardini A. AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach. Nucleic Acids Res 2024; 52:W29-W38. [PMID: 38795068 PMCID: PMC11223865 DOI: 10.1093/nar/gkae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
Gene therapy of dominantly inherited genetic diseases requires either the selective disruption of the mutant allele or the editing of the specific mutation. The CRISPR-Cas system holds great potential for the genetic correction of single nucleotide variants (SNVs), including dominant mutations. However, distinguishing between single-nucleotide variations in a pathogenic genomic context remains challenging. The presence of a PAM in the disease-causing allele can guide its precise targeting, preserving the functionality of the wild-type allele. The AlPaCas (Aligning Patients to Cas) webserver is an automated pipeline for sequence-based identification and structural analysis of SNV-derived PAMs that satisfy this demand. When provided with a gene/SNV input, AlPaCas can: (i) identify SNV-derived PAMs; (ii) provide a list of available Cas enzymes recognizing the SNV (s); (iii) propose mutational Cas-engineering to enhance the selectivity towards the SNV-derived PAM. With its ability to identify allele-specific genetic variants that can be targeted using already available or engineered Cas enzymes, AlPaCas is at the forefront of advancements in genome editing. AlPaCas is open to all users without a login requirement and is freely available at https://schubert.bio.uniroma1.it/alpacas.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Elisa Lustrino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Alessio Conci
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandra Fabrizi
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | | | - Elena Enzo
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Laura De Rosa
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
3
|
Movahedi A, Aghaei-Dargiri S, Li H, Zhuge Q, Sun W. CRISPR Variants for Gene Editing in Plants: Biosafety Risks and Future Directions. Int J Mol Sci 2023; 24:16241. [PMID: 38003431 PMCID: PMC10671001 DOI: 10.3390/ijms242216241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The CRISPR genome editing technology is a crucial tool for enabling revolutionary advancements in plant genetic improvement. This review shows the latest developments in CRISPR/Cas9 genome editing system variants, discussing their benefits and limitations for plant improvement. While this technology presents immense opportunities for plant breeding, it also raises serious biosafety concerns that require careful consideration, including potential off-target effects and the unintended transfer of modified genes to other organisms. This paper highlights strategies to mitigate biosafety risks and explores innovative plant gene editing detection methods. Our review investigates the international biosafety guidelines for gene-edited crops, analyzing their broad implications for agricultural and biotechnology research and advancement. We hope to provide illuminating and refined perspectives for industry practitioners and policymakers by evaluating CRISPR genome enhancement in plants.
Collapse
Affiliation(s)
- Ali Movahedi
- Department of Biology and the Environment, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Soheila Aghaei-Dargiri
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran 19858-13111, Iran
| | - Hongyan Li
- Department of Biology and the Environment, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Department of Biology and the Environment, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Weibo Sun
- Department of Biology and the Environment, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Gunitseva N, Evteeva M, Borisova A, Patrushev M, Subach F. RNA-Dependent RNA Targeting by CRISPR-Cas Systems: Characterizations and Applications. Int J Mol Sci 2023; 24:ijms24086894. [PMID: 37108063 PMCID: PMC10138764 DOI: 10.3390/ijms24086894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Genome editing technologies that are currently available and described have a fundamental impact on the development of molecular biology and medicine, industrial and agricultural biotechnology and other fields. However, genome editing based on detection and manipulation of the targeted RNA is a promising alternative to control the gene expression at the spatiotemporal transcriptomic level without complete elimination. The innovative CRISPR-Cas RNA-targeting systems changed the conception of biosensing systems and also allowed the RNA effectors to be used in various applications; for example, genomic editing, effective virus diagnostic tools, biomarkers, transcription regulations. In this review, we discussed the current state-of-the-art of specific CRISPR-Cas systems known to bind and cleave RNA substrates and summarized potential applications of the versatile RNA-targeting systems.
Collapse
Affiliation(s)
- Natalia Gunitseva
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Marta Evteeva
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Anna Borisova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Maxim Patrushev
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Fedor Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| |
Collapse
|
5
|
Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Front Microbiol 2023; 14:1076947. [PMID: 36760507 PMCID: PMC9905151 DOI: 10.3389/fmicb.2023.1076947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Malaria caused by Plasmodium is still a serious public health problem. Genomic editing is essential to understand parasite biology, elucidate mechanical pathways, uncover gene functions, identify novel therapeutic targets, and develop clinical diagnostic tools. Recent advances have seen the development of genomic diagnostic technologies and the emergence of genetic manipulation toolbox comprising a host of several systems for editing the genome of Plasmodium at the DNA, RNA, and protein level. Genomic manipulation at the RNA level is critical as it allows for the functional characterization of several transcripts. Of notice, some developed artificial RNA genome editing tools hinge on the endogenous RNA interference system of Plasmodium. However, Plasmodium lacks a robust RNAi machinery, hampering the progress of these editing tools. CRISPR-Cas13, which belongs to the VI type of the CRISPR system, can specifically bind and cut RNA under the guidance of crRNA, with no or minimal permanent genetic scar on genes. This review summarizes CRISPR-Cas13 system from its discovery, classification, principle of action, and diagnostic platforms. Further, it discusses the application prospects of Cas13-based systems in Plasmodium and highlights its advantages and drawbacks.
Collapse
Affiliation(s)
- Elvis Quansah
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yihuan Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Junyan Wang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yangxi Zhao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ming Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,*Correspondence: Li Yu, ✉
| | - Chao Zhang
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,Chao Zhang, ✉
| |
Collapse
|
6
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192625. [PMID: 36235491 PMCID: PMC9573444 DOI: 10.3390/plants11192625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|
7
|
Hamdan MF, Karlson CKS, Teoh EY, Lau SE, Tan BC. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 36235491 DOI: 10.1007/s44187-022-00009-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chou Khai Soong Karlson
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Liu L, Pei DS. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. Int J Mol Sci 2022; 23:11400. [PMID: 36232699 PMCID: PMC9569848 DOI: 10.3390/ijms231911400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely developed for DNA targeting and formed a set of mature precision gene-editing systems. However, the basic research and application of the CRISPR-Cas system in RNA is still in its early stages. Recently, the discovery of the CRISPR-Cas13 type VI system has provided the possibility for the expansion of RNA targeting technology, which has broad application prospects. Most type VI Cas13 effectors have dinuclease activity that catalyzes pre-crRNA into mature crRNA and produces strong RNA cleavage activity. Cas13 can specifically recognize targeted RNA fragments to activate the Cas13/crRNA complex for collateral cleavage activity. To date, the Cas13X protein is the smallest effector of the Cas13 family, with 775 amino acids, which is a promising platform for RNA targeting due to its lack of protospacer flanking sequence (PFS) restrictions, ease of packaging, and absence of permanent damage. This study highlighted the latest progress in RNA editing targeted by the CRISPR-Cas13 family, and discussed the application of Cas13 in basic research, nucleic acid diagnosis, nucleic acid tracking, and genetic disease treatment. Furthermore, we clarified the structure of the Cas13 protein family and their molecular mechanism, and proposed a future vision of RNA editing targeted by the CRISPR-Cas13 family.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
A Novel Approach of Antiviral Drugs Targeting Viral Genomes. Microorganisms 2022; 10:microorganisms10081552. [PMID: 36013970 PMCID: PMC9414836 DOI: 10.3390/microorganisms10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of viral diseases, which cause morbidity and mortality in animals and humans, are increasing annually worldwide. Vaccines, antiviral drugs, and antibody therapeutics are the most effective tools for combating viral infection. The ongoing coronavirus disease 2019 pandemic, in particular, raises an urgent need for the development of rapid and broad-spectrum therapeutics. Current antiviral drugs and antiviral antibodies, which are mostly specific at protein levels, have encountered difficulties because the rapid evolution of mutant viral strains resulted in drug resistance. Therefore, degrading viral genomes is considered a novel approach for developing antiviral drugs. The current article highlights all potent candidates that exhibit antiviral activity by digesting viral genomes such as RNases, RNA interference, interferon-stimulated genes 20, and CRISPR/Cas systems. Besides that, we introduce a potential single-chain variable fragment (scFv) that presents antiviral activity against various DNA and RNA viruses due to its unique nucleic acid hydrolyzing characteristic, promoting it as a promising candidate for broad-spectrum antiviral therapeutics.
Collapse
|
10
|
Newly Emerged Antiviral Strategies for SARS-CoV-2: From Deciphering Viral Protein Structural Function to the Development of Vaccines, Antibodies, and Small Molecules. Int J Mol Sci 2022; 23:ijms23116083. [PMID: 35682761 PMCID: PMC9181103 DOI: 10.3390/ijms23116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the most severe health crisis, causing extraordinary economic disruption worldwide. SARS-CoV-2 is a single-stranded RNA-enveloped virus. The process of viral replication and particle packaging is finished in host cells. Viral proteins, including both structural and nonstructural proteins, play important roles in the viral life cycle, which also provides the targets of treatment. Therefore, a better understanding of the structural function of virus proteins is crucial to speed up the development of vaccines and therapeutic strategies. Currently, the structure and function of proteins encoded by the SARS-CoV-2 genome are reviewed by several studies. However, most of them are based on the analysis of SARS-CoV-1 particles, lacking a systematic review update for SARS-CoV-2. Here, we specifically focus on the structure and function of proteins encoded by SARS-CoV-2. Viral proteins that contribute to COVID-19 infection and disease pathogenesis are reviewed according to the most recent research findings. The structure-function correlation of viral proteins provides a fundamental rationale for vaccine development and targeted therapy. Then, current antiviral vaccines are updated, such as inactive viral vaccines and protein-based vaccines and DNA, mRNA, and circular RNA vaccines. A summary of other therapeutic options is also reviewed, including monoclonal antibodies such as a cross-neutralizer antibody, a constructed cobinding antibody, a dual functional monoclonal antibody, an antibody cocktail, and an engineered bispecific antibody, as well as peptide-based inhibitors, chemical compounds, and clustered regularly interspaced short palindromic repeats (CRISPR) exploration. Overall, viral proteins and their functions provide the basis for targeted therapy and vaccine development.
Collapse
|