1
|
Huang R, Hu Q, Ko CN, Tang FK, Xuan S, Wong HM, Jin L, Li X, Leung KCF. Nano-based theranostic approaches for infection control: current status and perspectives. MATERIALS CHEMISTRY FRONTIERS 2024; 8:9-40. [DOI: 10.1039/d3qm01048a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nano-based theranostic platforms constructed from various nanomaterials possess unique advantages in tackling bacterial and fungal infections while detecting pathogenic cells, making them a potential modality for addressing global healthcare burdens.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qin Hu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chung-Nga Ko
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
2
|
Wang C, Jin L. Microbial persisters and host: recent advances and future perspectives. Crit Rev Microbiol 2023; 49:658-670. [PMID: 36165023 DOI: 10.1080/1040841x.2022.2125286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
Microbial persisters are defined as the tiny sub-population of microorganisms that develop intrinsic strategies for survival with high tolerance to various antimicrobials. Currently, persister research remains in its infancy, and it is indeed a great challenge to precisely distinguish persister cells from other drug tolerant ones. Notably, the existence of persisters crucially contributes to prolonged antibiotic exposure time and treatment failure, yet there is the formation of antibiotic-resistant mutants. Further understanding on persisters is of profound importance for effective prevention and control of chronic infections/inflammation. The past two decades have witnessed rapid advances on the science, technologies and methodologies for persister investigations, along with deep knowledge about persisters and numerous anti-persister approaches developed. Whereas, various critical issues remain unsolved, such as what are the potential interaction profiles of persisters and host cells, and how to apply what we know about persisters to translational studies and clinical practice. Importantly, it is highly essential to better understand the multifaceted and complex cross-talk of microbial persisters with the host to develop novel tackling strategies for precision healthcare in the near future.
Collapse
Affiliation(s)
- Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
3
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
4
|
Huang R, Zhou Z, Lan X, Tang FK, Cheng T, Sun H, Cham-Fai Leung K, Li X, Jin L. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Mater Today Bio 2023; 18:100507. [PMID: 36504541 PMCID: PMC9730226 DOI: 10.1016/j.mtbio.2022.100507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance is a global public health threat, and urgent actions should be undertaken for developing alternative antimicrobial strategies and approaches. Notably, bismuth drugs exhibit potent antimicrobial effects on various pathogens and promising efficacy in tackling SARS-CoV-2 and related infections. As such, bismuth-based materials could precisely combat pathogenic bacteria and effectively treat the resultant infections and inflammatory diseases through a controlled release of Bi ions for targeted drug delivery. Currently, it is a great challenge to rapidly and massively manufacture bismuth-based particles, and yet there are no reports on effectively constructing such porous antimicrobial-loaded particles. Herein, we have developed two rapid approaches (i.e., ultrasound-assisted and agitation-free methods) to synthesizing bismuth-based materials with ellipsoid- (Ellipsoids) and rod-like (Rods) morphologies respectively, and fully characterized physicochemical properties. Rods with a porous structure were confirmed as bismuth metal-organic frameworks (Bi-MOF) and aligned with the crystalline structure of CAU-17. Importantly, the formation of Rods was a 'two-step' crystallization process of growing almond-flake-like units followed by stacking into the rod-like structure. The size of Bi-MOF was precisely controlled from micro-to nano-scales by varying concentrations of metal ions and their ratio to the ligand. Moreover, both Ellipsoids and Rods showed excellent biocompatibility with human gingival fibroblasts and potent antimicrobial effects on the Gram-negative oral pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Both Ellipsoids and Rods at 50 μg/mL could disrupt the bacterial membranes, and particularly eliminate P. gingivalis biofilms. This study demonstrates highly efficient and facile approaches to synthesizing bismuth-based particles. Our work could enrich the administration modalities of metallic drugs for promising antibiotic-free healthcare.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwen Zhou
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022; 11:pathogens11101173. [PMID: 36297228 PMCID: PMC9609396 DOI: 10.3390/pathogens11101173] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic bacterium that lives in the oral cavity. It is an integral part of the oral microbiome, which includes more than 500 types of bacteria. Under certain circumstances, as a consequence of virulence factors, it can become very destructive and proliferate to many cells in periodontal lesions. It is one of the causative agents present extremely often in dental plaque and is the main etiological factor in the development of periodontal disease. During various therapeutic procedures, P. gingivalis can enter the blood and disseminate through it to distant organs. This primarily refers to the influence of periodontal agents on the development of subacute endocarditis and can facilitate the development of coronary heart disease, atherosclerosis, and ischemic infarction. The action of P. gingivalis is facilitated by numerous factors of virulence and pathogenicity such as fimbriae, hemolysin, hemagglutinin, capsules, outer membrane vesicles, lipopolysaccharides, and gingipains. A special problem is the possibility of biofilm formation. P. gingivalis in a biofilm is 500 to 1000 times less sensitive to antimicrobial drugs than planktonic cells, which represents a significant problem in the treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| | - Marko Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Miroslav Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cardiology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| |
Collapse
|
6
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
7
|
RNA Sequencing Reveals the Upregulation of FOXO Signaling Pathway in Porphyromonas gingivalis Persister-Treated Human Gingival Epithelial Cells. Int J Mol Sci 2022; 23:ijms23105728. [PMID: 35628542 PMCID: PMC9146424 DOI: 10.3390/ijms23105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Porphyromonas gingivalis as the keystone periodontopathogen plays a critical role in the pathogenesis of periodontitis, and crucially accounts for inflammatory comorbidities such as cardiovascular disease and Alzheimer's disease. We recently identified the existence of P. gingivalis persisters and revealed the unforeseen perturbation of innate response in human gingival epithelial cells (HGECs) due to these noxious persisters. Herein, RNA sequencing revealed how P. gingivalis persisters affected the expression profile of cytokine genes and related signaling pathways in HGECs. Results showed that metronidazole-treated P. gingivalis persisters (M-PgPs) impaired the innate host defense of HGECs, in a similar fashion to P. gingivalis. Notably, over one thousand differentially expressed genes were identified in HGECs treated with M-PgPs or P. gingivalis with reference to the controls. Gene Ontology and KEGG pathway analysis demonstrated significantly enriched signaling pathways, such as FOXO. Importantly, the FOXO1 inhibitor rescued the M-PgP-induced disruption of cytokine expression. This study suggests that P. gingivalis persisters may perturb innate host defense, through the upregulation of the FOXO signaling pathway. Thus, the current findings could contribute to developing new approaches to tackling P. gingivalis persisters for the effective control of periodontitis and P. gingivalis-related inflammatory comorbidities.
Collapse
|