1
|
Jubb AM, Shelton JL, McDevitt B, Amundson KK, Herzberg AS, Chenault J, Masterson AL, Varonka MS, Jolly G, DeVera CA, Barnhart E, Wilkins MJ, Blondes MS. Produced water geochemistry from hydraulically stimulated Niobrara Formation petroleum wells: Origin of salinity and temporal perspectives on treatment and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176845. [PMID: 39426534 DOI: 10.1016/j.scitotenv.2024.176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Produced water (i.e., a mixture of returned injection fluids and geologic formation brines) represents the largest volumetric waste stream associated with petroleum production in the United States. As such, produced water has been the focus of intense study with emphasis on understanding the geologic origin of the fluids, environmental impacts of unintended or intentional release, disposal concerns, and their commodity (e.g., lithium) potential. However, produced water geochemistry from many active petroleum plays remain poorly understood leading to knowledge gaps associated with the origin of brine salinity and parameters (e.g., radium levels) that can impact treatment, disposal, and possible reuse. Here we evaluate the major ion geochemistry, radium concentrations, and stable water isotope composition of ~120 produced water samples collected from 17 producing unconventional petroleum wells in Weld County, Colorado from the Late Cretaceous Niobrara Formation. This sample set encompasses eight produced water time series from four new wells across production days 0 to ~365 and from four established wells across production days ~1000 to ~1700. Additionally, produced water from nine other established Niobrara Formation wells were sampled at discrete time points ranging from day 458 to day 2256, as well as hydraulic fracturing input fluids. These results expand the available Niobrara Formation produced water geochemical data, previously limited to a few wells sampled within the first year of production, allowing for the heterogeneity of major ions and radium to be evaluated. Specific highlights include: (i) observations that boron and bromide concentrations are higher in produced waters from new wells compared to older, established wells, suggesting the role of input fluids contributing to fluid geochemistry; and (ii) barium and radium concentrations vary between the producing benches of the Niobrara Formation with implications for treating radiological hazards in produced waters from this formation. Furthermore, we explore the geochemical relationships between major ion ratios and stable water isotope composition to understand the origin of salinity in Niobrara Formation brines from the Denver-Julesburg Basin. These findings are discussed with perspective toward potential treatment and reuse of Niobrara produced water prior to disposal.
Collapse
Affiliation(s)
- Aaron M Jubb
- U.S. Geological Survey, Reston, Virginia 20192, USA.
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Indianapolis, Indiana 46202, USA
| | | | - Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | | | | | | | | - Glenn Jolly
- U.S. Geological Survey, Reston, Virginia 20192, USA
| | | | | | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
2
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
3
|
Biocides with Controlled Degradation for Environmentally Friendly and Cost-Effective Fecal Sludge Management. BIOLOGY 2022; 12:biology12010045. [PMID: 36671737 PMCID: PMC9855048 DOI: 10.3390/biology12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Didecyldimethylammonium chloride (DDAC) and polyhexamethylene guanidine (PHMG) exhibit high antimicrobial activity and are widely used as biocidal agents in chemical toilet additives for the management of fecal sludge (FS). Disposal of such biocide-treated FS to a wastewater treatment plant (WWTP) is a major environmental problem. It is possible to reduce environmental damage through the use of biocidal agents, which easily decompose after performing their main biocidal functions. In this work, it is proposed to use the fact of a gradual increase in pH of FS from the initial 7.5 to 9.0-10.0 due to the decomposition of urea. Six biocidal compounds were selected that are capable of rapidly degrading in an alkaline environment and one that naturally degrades upon prolonged incubation. Four of them: bronopol (30 mg/L), DBNPA (500 mg/L), Sharomix (500 mg/L), and sodium percarbonate (6000 mg/L) have shown promise for environmentally friendly management of FS. In selected dosage, they successfully reduced microbial activity under both aerobic and anaerobic conditions and are cost-effective. After 10 days of incubation, degradation of the biocide occurred as measured by biological oxygen demand (BOD5) in biocide-treated FS. Such FS can be discharged to WWTP without severe damage to the activated sludge process, the need for dilution and additional procedures to neutralize toxicity.
Collapse
|
4
|
Zhou S, Li Z, Peng S, Zhang D, Li W, Hong M, Li X, Yang J, Lu P. Combining eDNA and morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving waters. WATER RESEARCH 2022; 222:118869. [PMID: 35870390 DOI: 10.1016/j.watres.2022.118869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weichang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingyu Hong
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingquan Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Zhong C, Nesbø CL, von Gunten K, Zhang Y, Shao X, Jin R, Konhauser KO, Goss GG, Martin JW, He Y, Qian PY, Lanoil BD, Alessi DS. Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure, and functional potentials. Environ Microbiol 2022; 24:4108-4123. [PMID: 35416402 DOI: 10.1111/1462-2920.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure, and functional potentials under FPW exposure across a range of concentrations, exposure time, and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g., Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure, and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.,Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Camilla L Nesbø
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Konstantin von Gunten
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaoqing Shao
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rong Jin
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Brian D Lanoil
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|