1
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. mSystems 2024; 9:e0056824. [PMID: 39503509 DOI: 10.1128/msystems.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR systems. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. IMPORTANCE Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - J L Weissman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
- Department of Biology, The City College of New York, New York, New York, USA
| | - Philip L F Johnson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Wang P, Zeng Y, Liu J, Wang L, Yang M, Zhou J. Antimicrobial and anti-biofilm effects of dihydroartemisinin-loaded chitosan nanoparticles against methicillin-resistant Staphylococcus aureus. Microb Pathog 2024; 199:107208. [PMID: 39657894 DOI: 10.1016/j.micpath.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The formation of biofilms enhances bacterial antibiotic resistance, posing significant challenges to clinical treatment. Methicillin-resistant Staphylococcus aureus (MRSA) is a primary pathogen in biofilm-associated infections. Its high antibiotic resistance and incidence rates make it a major clinical challenge, underscoring the urgent need for novel therapeutic strategies. Building on previous research, this study employs nanotechnology to fabricate dihydroartemisinin-chitosan nanoparticles (DHA-CS NPs) and, for the first time, applies them to the treatment of MRSA biofilm infections. The antibacterial and anti-biofilm activities of these compounds were evaluated, and their potential mechanisms of action were preliminarily explored. The results demonstrated that the DHA-CS NPs exhibited a minimum inhibitory concentration (MIC) of15 μg/mLand a minimum bactericidal concentration (MBC) of 30 μg/mL. At 15 μg/mL, the DHA-CS NPs significantly inhibited MRSA biofilm formation (P < 0.001),while at 7.5 μg/mL, they dispersed 67.4 ± 3.77 % of the preformed biofilms (P < 0.001). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed the disruption of MRSA biofilms. Mechanistic studies, including phenol-sulfuric acid assays, static biofilm microtiter plate assays, and RT-qPCR, revealed that the DHA-CS NPs inhibited the synthesis of extracellular polymeric substances (EPS), suppressed the release of extracellular DNA (eDNA), and downregulated key biofilm-related genes (icaA, sarA, cidA, and agrA). These findings suggest that DHA-CS NPs hold significant promise for inhibiting and eradicating MRSA biofilms, providing a theoretical basis for the development of novel antibiofilm therapies.
Collapse
Affiliation(s)
- Peike Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yali Zeng
- Mianyang 404 Hospital, Mianyang, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lin Wang
- Mianyang 404 Hospital, Mianyang, China
| | - Min Yang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wang Q, Wang M, Chen Y, Miao Q, Jin W, Ma Y, Pan J, Hu B. Deciphering microbiome and fungi-bacteria interactions in chronic wound infections using metagenomic sequencing. Eur J Clin Microbiol Infect Dis 2024; 43:2383-2396. [PMID: 39367927 DOI: 10.1007/s10096-024-04955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Chronic wounds caused by infections impose a considerable global healthcare burden. The microbial features of these infections and possible correlations between bacteria and fungi may influence wound healing. However, metagenomic next-generation sequencing (mNGS) analyses of these features remain sparse. Therefore, we performed mNGS on chronic wound infection samples to investigate features and correlations between the bacteriome and mycobiome in 66 patients (28: chronic wounds; 38: non-chronic wounds). METHODS Microbial community characteristics in patients with wound infections, microbiome-systemic inflammation associations, and bacteria-fungi correlations were analyzed. RESULTS Infections constituted the primary cause of wounds in this study. Nontuberculous mycobacteria (23%) and Mycobacterium tuberculosis (13%) were the most common pathogens associated with chronic wounds, whereas Staphylococcus aureus (15%) was the most prevalent in non-chronic wound infections. Patients with chronic wound infections had a higher abundance of Pseudomonas aeruginosa than those without chronic wounds. Microbes with a high relative abundance in chronic wound infections were less significantly associated with plasma inflammatory factors than those in non-chronic wound infections. Additionally, a positive correlation between Candida glabrata and P. aeruginosa and an association between Malassezia restricta and anaerobic species were detected in patients with chronic wound infections. CONCLUSION Our results further support the hypothesis that P. aeruginosa is a microbial biomarker of chronic wound infection regardless of the causative pathogens. Moreover, we propose a positive correlation between C. glabrata and P. aeruginosa in chronic wound infections, which advances the current understanding of fungi-bacteria correlations in patients with chronic wound infections.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meixia Wang
- Department of Hospital Infection Control, Zhongshan Hospital Xiamen Branch Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenting Jin
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Ma
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
De Salvo C, Osme A, Ghannoum M, Cominelli F, Di Martino L. A New Probiotic Formulation Promotes Resolution of Inflammation in a Crohn's Disease Mouse Model by Inducing Apoptosis in Mucosal Innate Immune Cells. Int J Mol Sci 2024; 25:12066. [PMID: 39596135 PMCID: PMC11593709 DOI: 10.3390/ijms252212066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The interaction between gut-residing microorganisms plays a critical role in the pathogenesis of Crohn's disease (CD), where microbiome dysregulation can alter immune responses, leading to unresolved local inflammation. The aim of this study is to analyze the immunomodulatory properties of a recently developed probiotic + amylase blend in the SAMP1/YitFc (SAMP) mouse model of CD-like ileitis. Four groups of SAMP mice were gavaged for 56 days with the following treatments: 1) probiotic strains + amylase (0.25 mg/100 µL PBS); 2) only probiotics; 3) only amylase; PBS-treated controls. Ilea were collected for GeoMx Digital Spatial Profiler (DSP) analysis and histological evaluation. Histology assessment for inflammation indicated a significantly reduced level of ileitis in mice administered the probiotics + amylase blend. DSP analysis showed decreased abundance of neutrophils and increased abundance of dendritic cells, regulatory T cells, and macrophages, with a significant enrichment of five intracellular pathways related to apoptosis, in probiotics + amylase-treated mice. Increased apoptosis occurrence was confirmed by (TdT)- deoxyuridine triphosphate (dUTP)-biotin nick end labeling assay. Our data demonstrate a beneficial role of the probiotic and amylase blend, highlighting an increased apoptosis of innate immunity-associated cell subsets, thus promoting the resolution of inflammation. Hence, we suggest that the developed probiotic enzyme blend may be a therapeutic tool to manage CD and therefore is a candidate formulation to be tested in clinical trials.
Collapse
Affiliation(s)
- Carlo De Salvo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (C.D.S.); (F.C.)
| | - Abdullah Osme
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (C.D.S.); (F.C.)
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Ramakrishnan R, Nair AV, Parmar K, Rajmani RS, Chakravortty D, Das D. Combating biofilm-associated Klebsiella pneumoniae infections using a bovine microbial enzyme. NPJ Biofilms Microbiomes 2024; 10:119. [PMID: 39500915 PMCID: PMC11538315 DOI: 10.1038/s41522-024-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses significant clinical challenges with limited treatment options. Biofilm is an important virulence factor of K. pneumoniae, serving as a protective barrier against antibiotics and the immune system. Here, we present the remarkable ability of a bovine microbial enzyme to prevent biofilm formation (IC50 2.50 μM) and degrade pre-formed K. pneumoniae biofilms (EC50 1.94 μM) by degrading the matrix polysaccharides. The treatment was effective against four different clinical K. pneumoniae isolates tested. Moreover, the enzyme significantly improved the biofilm sensitivity of a poorly performing broad-spectrum antibiotic, meropenem, and immune cells, resulting in facile biofilm clearance from the mouse wound infection. Notably, well-known powerful enzymes of the same class, cellulase, and α-amylase, were nearly inactive against the K. pneumoniae biofilms. The enzyme exhibited antibiofilm activity without showing toxicity to the mammalian and microbial cells, highlighting the potential of the enzyme for in vivo applications.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash V Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
van Hoogstraten SWG, Kuik C, Arts JJC, Cillero-Pastor B. Molecular imaging of bacterial biofilms-a systematic review. Crit Rev Microbiol 2024; 50:971-992. [PMID: 37452571 PMCID: PMC11523921 DOI: 10.1080/1040841x.2023.2223704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.
Collapse
Affiliation(s)
- S. W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C. Kuik
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - J. J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - B. Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, The MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
7
|
Krzyżek P. What Is a Biofilm? Lessons Learned from Interactions with Immune Cells. Int J Mol Sci 2024; 25:11684. [PMID: 39519236 PMCID: PMC11546875 DOI: 10.3390/ijms252111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Biofilms are unique, multicellular life forms that challenge our understanding of the microbial functioning. The last decades of research on biofilms have allowed us to better understand their importance in the context of both health and various pathologies in the human body, although many knowledge gaps hindering their correct comprehension still exist. Biofilms are classically described as mushroom-shaped structures attached to the substrate; however, an increasing body of evidence shows that their morphology in clinical conditions may differ significantly from that classically presented. Although this may result partly from the unique physicochemical conditions within the host, the interaction between microbes and immune cells during development of a biofilm should not be underestimated. The current Opinion confronts the classical view on biofilms with the latest scientific research describing the vitality of interactions with immune cells as a modulator of the biofilm phenotype and behavior in clinical conditions.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
8
|
Jo A, Kim HE. Antibacterial Effects of Black Cumin Seed Oil on Oral Microcosm Biofilms. Microorganisms 2024; 12:2098. [PMID: 39458407 PMCID: PMC11510604 DOI: 10.3390/microorganisms12102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Interest in natural extracts for managing oral biofilms is increasing, with black cumin seed oil (BCSO) demonstrating efficacy against Streptococcus mutans. The effectiveness of antibacterial agents should be evaluated using multi-species oral biofilm models that closely mimic actual conditions. This study aimed to compare the antibacterial effects of BCSO and chlorhexidine gluconate (CHX) on oral microcosm biofilms. Biofilms using human saliva as the inoculum were cultured for 2 days and subsequently treated with 0.5% dimethyl sulfoxide, 0.5% BCSO, or 0.12% CHX once daily for 6 days. Following treatment, the red fluorescence intensity (RatioR/G) of the oral biofilm; biomass, including extracellular polymeric substance (EPS) levels and live bacteria counts; and colony-forming units (CFUs) of aciduric bacteria were evaluated. RatioR/G after BCSO treatment (1.26 ± 0.03) was not significantly different from that after CHX treatment (p = 0.552). The EPS levels were also not significantly different between the two groups (p = 0.743). The live bacteria count was 0.55 times lower in the BCSO-treated group than in the CHX-treated group (p = 0.018). No significant between-group difference was observed in the CFUs of aciduric bacteria (p = 0.935). These results suggest that BCSO exhibits antibacterial effects similar to those of CHX, highlighting its potential as an effective alternative.
Collapse
Affiliation(s)
- Ahyun Jo
- Department of Health Science, Gachon University Graduate School of Public Health, Incheon 21936, Republic of Korea;
| | - Hee-Eun Kim
- Department of Dental Hygiene, Gachon University College of Medical Science, Incheon 21936, Republic of Korea
| |
Collapse
|
9
|
Subbarayudu S, Snega Priya P, Rajagopal R, Alfarhan A, Guru A, Arockiaraj J. Impact of acidic and alkaline conditions on Staphylococcus aureus and Acinetobacter baumannii interactions and their biofilms. Arch Microbiol 2024; 206:426. [PMID: 39375235 DOI: 10.1007/s00203-024-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Bacterial biofilms pose significant challenges due to their association with antibiotic resistance, metabolic adaptation, and survival under harsh conditions. Among notable pathogens forming biofilms, Staphylococcus aureus and Acinetobacter baumannii are concerning pathogens in nosocomial settings. However, their behaviour under acidic (pH 4.5) and alkaline (pH10.5) conditions, especially in co-culture setups, remains insufficiently understood. This study investigates these aspects, by examining growth rates, biofilm formation, pH shifts, phenotypic analysis, and gene expression profiles. The results showed A. baumannii exhibited reduced growth and biofilm formation at pH 4.5, while S. aureus showed slow growth and low biofilm formation at pH10.5 in mono-cultures. S. aureus leaned towards an acidic pH (6-6.5), whereas A. baumannii shifted towards an alkaline pH (8-9). In co-culture environments, growth rates and biofilm formation increased across all pH conditions, converging towards a neutral pH over time. Phenotypic motility assays indicated that A. baumannii exhibited greater motility in alkaline conditions, while S. aureus showed increased staphyloxanthin production under acidic conditions. Gene expression analyses revealed that the fibronectin-binding protein A (FnbA) and N-acetylglucosaminyl-transferase (icaA) genes, responsible for initial attachment during biofilm formation, were highly expressed in acidic co-culture condition but poorly expressed in alkaline condition. In A. baumannii, the outer membrane protein A (OmpA) gene associated with adhesion and virulence, was upregulated in co-culture. The LuxR gene involved in quorum sensing was upregulated in acidic conditions and poorly expressed at pH 10.5. This study elucidates the metabolic adaptability and biofilm formation tendencies of S. aureus towards acidic conditions and A. baumannii towards alkaline conditions, providing insights for better management of biofilm-related infections.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
10
|
Margot C, Rhoads W, Gabrielli M, Olive M, Hammes F. Dynamics of drinking water biofilm formation associated with Legionella spp. colonization. NPJ Biofilms Microbiomes 2024; 10:101. [PMID: 39368992 PMCID: PMC11455961 DOI: 10.1038/s41522-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
Understanding how Legionella spp. proliferate in multispecies biofilms is essential to develop strategies to control their presence in building plumbing. Here, we analyzed biofilm formation and Legionella spp. colonization on new plumbing material during 8 weeks. Biofilm formation was characterized by an initial increase in intact cell concentrations up to 9.5 × 105 cells/cm2, followed by a steady decrease. We identified Comamonas, Caulobacter, Schlegella, Blastomonas and Methyloversatilis as pioneer genera in the biofilm formation process. Importantly, L. pneumophila was the dominant Legionella spp. and rapidly colonized the biofilms, with culturable cell concentrations peaking at 3.1 × 104 MPN/cm2 after 4 weeks already. Moreover, several Legionella species co-occurred and had distinct dynamics of biofilm colonization. Vermamoeba vermiformis (V. vermiformis) was the dominant protist identified with 18S rRNA gene amplicon sequencing. Together our results highlight that biofilm formation upon introduction of new building plumbing material is a dynamic process where pathogenic Legionella species can be part of the earliest colonizers.
Collapse
Affiliation(s)
- Céline Margot
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - William Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Margot Olive
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
11
|
Aherne O, Mørch M, Ortiz R, Shannon O, Davies JR. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro. Microbiol Spectr 2024; 12:e0025324. [PMID: 38785429 PMCID: PMC11218471 DOI: 10.1128/spectrum.00253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
In nature, bacteria usually exist as mixed-species biofilms, where they engage in a range of synergistic and antagonistic interactions that increase their resistance to environmental challenges. Biofilms are a major cause of persistent infections, and dispersal from initial foci can cause new infections at distal sites thus warranting further investigation. Studies of development and spatial interactions in mixed-species biofilms can be challenging due to difficulties in identifying the different bacterial species in situ. Here, we apply CellTrace dyes to studies of biofilm bacteria and present a novel application for multiplex labeling, allowing identification of different bacteria in mixed-species, in vitro biofilm models. Oral bacteria labeled with CellTrace dyes (far red, yellow, violet, and CFSE [green]) were used to create single- and mixed-species biofilms, which were analyzed with confocal spinning disk microscopy (CSDM). Biofilm supernatants were studied with flow cytometry (FC). Both Gram-positive and Gram-negative bacteria were well labeled and CSDM revealed biofilms with clear morphology and stable staining for up to 4 days. Analysis of CellTrace labeled cells in supernatants using FC showed differences in the biofilm dispersal between bacterial species. Multiplexing with different colored dyes allowed visualization of spatial relationships between bacteria in mixed-species biofilms and relative coverage by the different species was revealed through segmentation of the CSDM images. This novel application, thus, offers a powerful tool for studying structure and composition of mixed-species biofilms in vitro.IMPORTANCEAlthough most chronic infections are caused by mixed-species biofilms, much of our knowledge still comes from planktonic cultures of single bacterial species. Studies of formation and development of mixed-species biofilms are, therefore, required. This work describes a method applicable to labeling of bacteria for in vitro studies of biofilm structure and dispersal. Critically, labeled bacteria can be multiplexed for identification of different species in mixed-species biofilms using confocal spinning disk microscopy, facilitating investigation of biofilm development and spatial interactions under different environmental conditions. The study is an important step in increasing the tools available for such complex and challenging studies.
Collapse
Affiliation(s)
- Olivia Aherne
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
- CR Competence, Lund, Sweden
| | - Martina Mørch
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | - Oonagh Shannon
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
12
|
Lyu C, Hu H, Cai L, He S, Xu X, Zhou G, Wang H. A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis. J Adv Res 2024:S2090-1232(24)00232-7. [PMID: 38852803 DOI: 10.1016/j.jare.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. OBJECTIVES This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. METHODS Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. RESULTS SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. CONCLUSION SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.
Collapse
Affiliation(s)
- Chongyang Lyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haijing Hu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuwen He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
13
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594560. [PMID: 38952799 PMCID: PMC11216370 DOI: 10.1101/2024.05.16.594560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR system. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. Importance 2Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
|
14
|
Rayi S, Cai Y, Greenwich JL, Fuqua C, Gerdt JP. Interbacterial Biofilm Competition through a Suite of Secreted Metabolites. ACS Chem Biol 2024; 19:462-470. [PMID: 38261537 PMCID: PMC10951839 DOI: 10.1021/acschembio.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymicrobial biofilms are ubiquitous, and the complex interspecies interactions within them are cryptic. We discovered the chemical foundation of antagonistic interactions in a model dual-species biofilm in which Pseudomonas aeruginosa inhibits the biofilm formation of Agrobacterium tumefaciens. Three known siderophores produced by P. aeruginosa (pyoverdine, pyochelin, and dihydroaeruginoic acid) were each capable of inhibiting biofilm formation. Surprisingly, a mutant that was incapable of producing these siderophores still secreted an antibiofilm metabolite. We discovered that this inhibitor was N5-formyl-N5-hydroxy-l-ornithine (fOHOrn)─a precursor in pyoverdine biosynthesis. Unlike the siderophores, this inhibitor did not appear to function via extracellular metal sequestration. In addition to this discovery, the compensatory overproduction of a new biofilm inhibitor illustrates the risk of pleiotropy in genetic knockout experiments. In total, this work lends new insight into the chemical nature of dual-species biofilm regulation and reveals a new naturally produced inhibitor of A. tumefaciens biofilm formation.
Collapse
Affiliation(s)
- Soniya Rayi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yanyao Cai
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jennifer L Greenwich
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167774. [PMID: 37848152 DOI: 10.1016/j.scitotenv.2023.167774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Biofilm formation represents a pivotal and adaptable trait among microorganisms within natural environments. This attribute plays a multifaceted role across diverse contexts, including environmental, aquatic, industrial, and medical systems. While previous research has primarily focused on the adverse impacts of biofilms, harnessing their potential effectively could confer substantial advantages to humanity. In the face of escalating environmental pressures (e.g., drought, salinity, extreme temperatures, and heavy metal pollution), which jeopardize global crop yields, enhancing crop stress tolerance becomes a paramount endeavor for restoring sufficient food production. Recently, biofilm-forming plant growth-promoting bacteria (PGPB) have emerged as promising candidates for agricultural application. These biofilms are evidence of microorganism colonization on plant roots. Their remarkable stress resilience empowers crops to thrive and yield even in harsh conditions. This is accomplished through increased root colonization, improved soil properties, and the synthesis of valuable secondary metabolites (e.g., ACC deaminase, acetin, 2,3-butanediol, proline, etc.). This article elucidates the mechanisms underpinning the role of biofilm-forming PGPB in bolstering plant growth amidst environmental challenges. Furthermore, it explores the tangible applications of these biofilms in agriculture and delves into strategies for manipulating biofilm formation to extract maximal benefits in practical crop production scenarios.
Collapse
Affiliation(s)
- Yujia Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai 602105, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
16
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Pelevina A, Gruzdev E, Berestovskaya Y, Dorofeev A, Nikolaev Y, Kallistova A, Beletsky A, Ravin N, Pimenov N, Mardanov A. New insight into the granule formation in the reactor for enhanced biological phosphorus removal. Front Microbiol 2023; 14:1297694. [PMID: 38163067 PMCID: PMC10755871 DOI: 10.3389/fmicb.2023.1297694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
While granulated activated sludge exhibits high productivity, the processes of granule formation are incompletely studied. The processes of granule formation and succession of communities were investigated in a laboratory sequencing batch reactor (SBR) under conditions for enhanced biological phosphorus removal (EBPR) using microbiological and molecular techniques. Active consumption of acetate, primarily by the phosphate-accumulating organisms (PAO), commenced at day 150 of cultivation. This was indicated by the high ratio of molar P-released/acetate uptake (0.73-0.77 P-mol/C-mol), characteristic of PAO. During this period, two types of granule-like aggregates formed spontaneously out of the activated sludge flocs. The aggregates differed in morphology and microbial taxonomic composition. While both aggregate types contained phosphorus-enriched bacterial cells, PAO prevailed in those of morphotype I, and glycogen-accumulating organisms (GAOs) were predominant in the aggregates of morphotype II. After 250 days, the elimination of the morphotype II aggregates from the reactor was observed. The subsequent selection of the community was associated with the development of the morphotype I aggregates, in which the relative abundance of PAO increased significantly, resulting in higher efficiency of phosphorus removal. Metagenomic analysis revealed a predominance of the organisms closely related to Candidatus Accumulibacter IС and IIС and of Ca. Accumulibacter IIB among the PAO. Based on the content of the genes of the key metabolic pathways, the genomes of potential PAO belonging to the genera Amaricoccus, Azonexus, Thauera, Zoogloea, Pinisolibacter, and Siculibacillus were selected. The patterns of physicochemical processes and the microbiome structure associated with granule formation and succession of the microbial communities were revealed.
Collapse
Affiliation(s)
- Anna Pelevina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yulia Berestovskaya
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kallistova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Ravin
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Mathur A, Parihar AS, Modi S, Kalra A. Photodynamic therapy for ESKAPE pathogens: An emerging approach to combat antimicrobial resistance (AMR). Microb Pathog 2023; 183:106307. [PMID: 37604213 DOI: 10.1016/j.micpath.2023.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
The increase in antimicrobial resistance, particularly in ESKAPE pathogens, has resulted in the dire need for new therapeutic approaches. ESKAPE is an acronym for a group of bacteria that are responsible for a majority of nosocomial and community acquired infections. The acronym stands for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. These pathogens are known for their ability to develop resistance to multiple antibiotics, making them difficult to treat thus posing a significant threat to public health. In light of the alarming consequences of antimicrobial resistance, it has been estimated that, in the absence of a substantial increase in the rate of development of new effective drugs, the number of casualties related to these infections will increase from about 700,000 in 2016 up to nearly 10,000,000 in 2050 [1]. One potential strategy to treat these pathogens is photodynamic therapy (PDT). In the early 20th century, Oscar Raab observed the phototoxicity of acridine red against Paramecium caudatum, while Tappenier and Jesionek demonstrated the photodynamic effects of eosin for treating cutaneous diseases. These discoveries laid the foundation for Photodynamic Therapy (PDT), which utilizes a non-toxic photosensitizer (PS) followed by targeted light irradiation for treatment [2]. PDT involves the use of a photosensitizer, a light source, and oxygen to eliminate highly active infectious pathogens such as bacteria, viruses, and fungi. PDT is known to possess several advantages including localized treatment and fewer side effects. Various photosensitizers and light sources have been assessed in different strains, showing promising results suggesting PDT to be a promising potential treatment option. PDT utilizes PS compounds with suitable light absorption that showcase effective results against the pathogens in vitro and in vivo, including BODIPY derivatives, Methylene Blue, and other dyes like porphyrin derivatives, phthalocyanines, indole derivatives, Photophrin, etc., inhibiting the growth of infections, for both in planktonic cells and in biofilms. Combination of PDT with other therapies like efflux pump inhibitors or quorum sensing inhibitors has also proven to be efficacious. However, this domain further needs to be assessed before it reaches the society.
Collapse
Affiliation(s)
| | | | - Simran Modi
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | | |
Collapse
|
19
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|
20
|
Taillefer B, Grandjean MM, Herrou J, Robert D, Mignot T, Sebban-Kreuzer C, Cascales E. Qualitative and Quantitative Methods to Measure Antibacterial Activity Resulting from Bacterial Competition. Bio Protoc 2023; 13:e4706. [PMID: 37449039 PMCID: PMC10336571 DOI: 10.21769/bioprotoc.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 04/16/2023] [Indexed: 07/18/2023] Open
Abstract
In the environment, bacteria compete for niche occupancy and resources; they have, therefore, evolved a broad variety of antibacterial weapons to destroy competitors. Current laboratory techniques to evaluate antibacterial activity are usually labor intensive, low throughput, costly, and time consuming. Typical assays rely on the outgrowth of colonies of prey cells on selective solid media after competition. Here, we present fast, inexpensive, and complementary optimized protocols to qualitatively and quantitively measure antibacterial activity. The first method is based on the degradation of a cell-impermeable chromogenic substrate of the β-galactosidase, a cytoplasmic enzyme released during lysis of the attacked reporter strain. The second method relies on the lag time required for the attacked cells to reach a defined optical density after the competition, which is directly dependent on the initial number of surviving cells. Key features First method utilizes the release of β-galactosidase as a proxy for bacterial lysis. Second method is based on the growth timing of surviving cells. Combination of two methods discriminates between cell death and lysis, cell death without lysis, or survival to quasi-lysis. Methods optimized to various bacterial species such as Escherichia coli, Pseudomonas aeruginosa, and Myxococcus xanthus. Graphical overview.
Collapse
Affiliation(s)
- Boris Taillefer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7255, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Marie M. Grandjean
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7255, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Julien Herrou
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7283, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Donovan Robert
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7283, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7283, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7255, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Univ–CNRS, UMR7255, 31 Chemin Joseph Aiguier CS7071, 13402 Marseille Cedex 09, France
| |
Collapse
|
21
|
Scavone P, Iribarnegaray V, González MJ, Navarro N, Caneles-Huerta N, Jara-Wilde J, Härtel S, Zunino P. Role of Proteus mirabilis flagella in biofilm formation. Rev Argent Microbiol 2023; 55:226-234. [PMID: 37076397 DOI: 10.1016/j.ram.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 04/21/2023] Open
Abstract
Proteus mirabilis(P. mirabilis) is a common etiological agent of urinary tract infections, particularly those associated with catheterization. P. mirabilis efficiently forms biofilms on different surfaces and shows a multicellular behavior called 'swarming', mediated by flagella. To date, the role of flagella in P. mirabilis biofilm formation has been under debate. In this study, we assessed the role of P. mirabilis flagella in biofilm formation using an isogenic allelic replacement mutant unable to express flagellin. Different approaches were used, such as the evaluation of cell surface hydrophobicity, bacterial motility and migration across catheter sections, measurements of biofilm biomass and biofilm dynamics by immunofluorescence and confocal microscopy in static and flow models. Our findings indicate that P. mirabilis flagella play a role in biofilm formation, although their lack does not completely avoid biofilm generation. Our data suggest that impairment of flagellar function can contribute to biofilm prevention in the context of strategies focused on particular bacterial targets.
Collapse
Affiliation(s)
- Paola Scavone
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Victoria Iribarnegaray
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Department of Pathobiology, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - María José González
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicole Caneles-Huerta
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Processing (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
22
|
Mironova AV, Karimova AV, Bogachev MI, Kayumov AR, Trizna EY. Alterations in Antibiotic Susceptibility of Staphylococcus aureus and Klebsiella pneumoniae in Dual Species Biofilms. Int J Mol Sci 2023; 24:ijms24108475. [PMID: 37239822 DOI: 10.3390/ijms24108475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
In the last decades, it has been shown that biofilm-associated infections in most cases are caused by rather two or even more pathogens than by single microorganisms. Due to intermicrobial interactions in mixed communities, bacteria change their gene expression profile, in turn leading to alterations in the biofilm structure and properties, as well as susceptibility to antimicrobials. Here, we report the alterations of antimicrobials efficiency in mixed biofilms of Staphylococcus aureus-Klebsiella pneumoniae in comparison with mono-species biofilms of each counterpart and discuss possible mechanisms of these alterations. In cell clumps detached from dual-species biofilms, S. aureus became insensitive to vancomycin, ampicillin, and ceftazidime compared to solely S. aureus cell clumps. In turn, the increased efficiency of amikacin and ciprofloxacin against both bacteria could be observed, compared to mono-species biofilms of each counterpart. Scanning electron microscopy and confocal microscopy indicate the porous structure of the dual-species biofilm, and differential fluorescent staining revealed an increased number of polysaccharides in the matrix, in turn leading to more loose structure and thus apparently providing increased permeability of the dual-species biofilm to antimicrobials. The qRT-PCR showed that ica operon in S. aureus became repressed in mixed communities, and polysaccharides are produced mainly by K. pneumoniae. While the molecular trigger of these changes remains undiscovered, detailed knowledge of the alterations in antibiotic susceptibility to given drugs opens doors for treatment correction options for S. aureus-K. pneumoniae biofilm-associated infections.
Collapse
Affiliation(s)
- Anna V Mironova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Agniya V Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail I Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
23
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|
24
|
Jakovljević V, Grujić S, Simić Z, Ostojić A, Radojević I. Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater. Front Microbiol 2022; 13:1017372. [PMID: 36267171 PMCID: PMC9577556 DOI: 10.3389/fmicb.2022.1017372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of heavy metals (HMs) in the environment represents a serious environmental problem. In this regard, this work was conceived with the aim of finding, among indigenous microorganisms, the species and their combinations with the best biosorption activity for the following HMs: zinc, lead, cadmium, copper, and nickel. The experiment was carried out in several steps: (1) isolation and identification of microbial strains from the Central Effluent Treatment Plant’s wastewater; (2) studying the interaction of microorganisms and the ability to form biofilms in 96-well plates; (3) testing the resistance of biofilms to HMs; (4) testing the growth of biofilms on AMB media carriers in the presence of HMS; and (5) biosorption assay. The selected strains used in this study were: Enterobacter cloacae, Klebsiella oxytoca, Serratia odorifera, and Saccharomyces cerevisiae. The best biofilm producers in control medium were K. oxytoca/S. odorifera (KS), followed by K. oxytoca/S. odorifera/S. cerevisiae (KSC), and E. cloacae/K. oxytoca/S. odorifera (EKS) after 10 days of incubation. Mixed cultures composed of three species showed the highest resistance to the presence of all tested metals. The best biosorption capacity was shown by KSC for Cu2+ (99.18%), followed by EKS for Pb2+ (99.14%) and Cd2+ (99.03%), K. oxytoca for Ni2+ (98.47%), and E. cloacae for Zn2+ (98.06%). This research offers a novel approach to using mixed biofilms for heavy metal removal processes as well as its potential application in the bioremediation of wastewater.
Collapse
Affiliation(s)
- Violeta Jakovljević
- Department of Natural-Mathematic Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Sandra Grujić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Zoran Simić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Ostojić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- *Correspondence: Ivana Radojević,
| |
Collapse
|
25
|
Choufa C, Tidjani AR, Gauthier A, Harb M, Lao J, Leblond-Bourget N, Vos M, Leblond P, Bontemps C. Prevalence and mobility of integrative and conjugative elements within a Streptomyces natural population. Front Microbiol 2022; 13:970179. [PMID: 36177458 PMCID: PMC9513070 DOI: 10.3389/fmicb.2022.970179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer (HGT) is a powerful force generating genomic diversity in bacterial populations. HGT in Streptomyces is in large part driven by conjugation thanks to plasmids, Integrative and Conjugative elements (ICEs) and Actinomycete ICEs (AICEs). To investigate the impact of ICE and AICE conjugation on Streptomyces genome evolution, we used in silico and experimental approaches on a set of 11 very closely related strains isolated from a millimeter scale rhizosphere population. Through bioinformatic searches of canonical conjugation proteins, we showed that AICEs are the most frequent integrative conjugative elements, with the central chromosome region being a hotspot for integrative element insertion. Strains exhibited great variation in AICE composition consistent with frequent HGT and/or gene loss. We found that single insertion sites can be home to different elements in different strains (accretion) and conversely, elements belonging to the same family can be found at different insertion sites. A wide variety of cargo genes was present in the AICEs with the potential to mediate strain-specific adaptation (e.g., DNA metabolism and resistance genes to antibiotic and phages). However, a large proportion of AICE cargo genes showed hallmarks of pseudogenization, consistent with deleterious effects of cargo genes on fitness. Pock assays enabled the direct visualization of conjugal AICE transfer and demonstrated the transfer of AICEs between some, but not all, of the isolates. Multiple AICEs were shown to be able to transfer during a single mating event. Although we did not obtain experimental evidence for transfer of the sole chromosomal ICE in this population, genotoxic stress mediated its excision from the chromosome, suggesting its functionality. Our results indicate that AICE-mediated HGT in Streptomyces populations is highly dynamic, with likely impact on strain fitness and the ability to adapt to environmental change.
Collapse
Affiliation(s)
| | - Abdoul-Razak Tidjani
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Faculty of Medecine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble-Alpes, TIMC (UMR 5525), Grenoble, France
| | | | - Manar Harb
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- INRAE-ONIRIS, Nantes, France
| | - Julie Lao
- INRAE, UR1404 MaIAGE, Jouy-en-Josas, France
| | | | - Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Penryn, United Kingdom
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Pierre Leblond,
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Cyril Bontemps,
| |
Collapse
|
26
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
27
|
Martínez OF, Duque HM, Franco OL. Peptidomimetics as Potential Anti-Virulence Drugs Against Resistant Bacterial Pathogens. Front Microbiol 2022; 13:831037. [PMID: 35516442 PMCID: PMC9062693 DOI: 10.3389/fmicb.2022.831037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The uncontrollable spread of superbugs calls for new approaches in dealing with microbial-antibiotic resistance. Accordingly, the anti-virulence approach has arisen as an attractive unconventional strategy to face multidrug-resistant pathogens. As an emergent strategy, there is an imperative demand for discovery, design, and development of anti-virulence drugs. In this regard, peptidomimetic compounds could be a valuable source of anti-virulence drugs, since these molecules circumvent several shortcomings of natural peptide-based drugs like proteolytic instability, immunogenicity, toxicity, and low bioavailability. Some emerging evidence points to the feasibility of peptidomimetics to impair pathogen virulence. Consequently, in this review, we shed some light on the potential of peptidomimetics as anti-virulence drugs to overcome antibiotic resistance. Specifically, we address the anti-virulence activity of peptidomimetics against pathogens' secretion systems, biofilms, and quorum-sensing systems.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
28
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|
29
|
Bremer E, Hoffmann T, Dempwolff F, Bedrunka P, Bange G. The many faces of the unusual biofilm activator RemA. Bioessays 2022; 44:e2200009. [PMID: 35289951 DOI: 10.1002/bies.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.
Collapse
Affiliation(s)
- Erhard Bremer
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Dempwolff
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|