1
|
Caldeira JB, Correia AA, Branco R, Morais PV. The effect of biopolymer stabilisation on biostimulated or bioaugmented mine residue for potential technosol production. Sci Rep 2024; 14:25583. [PMID: 39462015 PMCID: PMC11513976 DOI: 10.1038/s41598-024-75840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants. This work aims to assess the use of bioleached and stabilised residues from a tungsten mine for technosol production. The first objective was to evaluate mine tailings for their bioleaching potential by biostimulation or bioaugmentation with strain Diaphorobacter polyhydroxybutyrativorans B2A2W2. The second was to evaluate the effect of Portland cement or biopolymers such as Carboxymethyl Cellulose (CMC) or Xanthan Gum (XG) on the stabilisation of bioleached residues. The impact of biopolymers on residues' characteristics, such as metal leaching, number of cultivable microorganisms, compression strength and ecotoxicity was evaluated using flow systems. Over time, bioleached metallic elements decreased, except for iron (Fe). Biostimulated and stabilised residues exhibited similar trends; both CMC and cement showed low leaching rates and viable microorganisms in the same order (106 CFU × ml-1). However, bioaugmented residue stabilised with XG showed 106 CFU × ml-1 viable microorganisms and increased 2.2-fold Fe leaching than BA_Control. CMC addition to bioaugmented residue reduced 5.9-fold Fe leaching and increased 100-fold viable microorganisms. By utilising both biological and engineering approaches to characterise the technosol, this study contributes to advancing knowledge of technosol production. The residues biostimulated and stabilised with CMC produced a material useful for bio-applications, with low toxicity and metal leaching, useful for bio-applications. XG was the best stabiliser for geotechnical engineering applications, with improved compression strength. In conclusion, the study demonstrates the usefulness of biopolymer treatment for residues and emphasises the importance of selecting the appropriate biopolymer for the intended function of technosols.
Collapse
Affiliation(s)
- Joana B Caldeira
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - António A Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Civil Engineering, Universidade de Coimbra, R. Luís Reis Santos, 3030-788, Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| | - Paula V Morais
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Lordelo R, Branco R, Gama F, Morais PV. Assessment of antimicrobial resistance, biofilm formation, and surface modification potential in hospital strains of Pseudomonas aeruginosa and Klebsiella pneumoniae. Heliyon 2024; 10:e30464. [PMID: 38711646 PMCID: PMC11070870 DOI: 10.1016/j.heliyon.2024.e30464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
The occurrence of healthcare-associated infections is a multifactorial phenomenon related to hospital space contamination by bacteria. The ESKAPE group, specifically Pseudomonas aeruginosa and Klebsiella pneumoniae, play a relevant role in the occurrence of these infections. Therefore, comprehensive research is needed to identify characteristics that justify the prevalence of these species in the healthcare environment. In this line, the study aimed to determine the antimicrobial resistance, biofilm formation, and the potential for polymer degradation in a collection of 33 P. aeruginosa strains and 2 K. pneumoniae strains sampled from various equipment and non-critical surfaces in a Portuguese hospital. Antimicrobial susceptibility tests revealed that none of the strains was categorized as multidrug-resistant (non-MDR). An assessment of their biofilm-forming capabilities indicated that 97 % of the strains exhibited biofilm-producing characteristics. Notably, within this group, the majority of P. aeruginosa and half of K. pneumoniae strains were classified as strong biofilm producers. Furthermore, the strains were evaluated for their potential to cause damage or change medical devices, namely infusion sets, nasal cannula, and urinary catheters. Three P. aeruginosa strains, two strong and one moderate biofilm producers, showed the highest ability to modify surfaces of the nasal cannula and infusion sets. Additionally, the Chi-square test revealed a statistically significant relationship between the presence of P. aeruginosa strains and the water accession spots. In conclusion, this work suggests that bacteria from this group hold a significant ability to grow in the healthcare environment through the degradation of non-critical materials. This suggests a potential concern for the persistence and proliferation of these organisms in hospital environments, emphasizing the importance of robust infection control measures to mitigate the risks associated with bacterial growth on such surfaces.
Collapse
Affiliation(s)
- Roberta Lordelo
- University of Coimbra, Centre for Mechanical Engineering Material and Processes, ARISE, Department of Life Sciences, Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering Material and Processes, ARISE, Department of Life Sciences, Coimbra, Portugal
| | - Fernando Gama
- Health Sciences Research Unit: Nursing (UICISA: E), Portugal and Health School of the Polytechnic Institute of Viseu, Portugal
| | - Paula V. Morais
- University of Coimbra, Centre for Mechanical Engineering Material and Processes, ARISE, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
3
|
Kehlet-Delgado H, Montoya AP, Jensen KT, Wendlandt CE, Dexheimer C, Roberts M, Torres Martínez L, Friesen ML, Griffitts JS, Porter SS. The evolutionary genomics of adaptation to stress in wild rhizobium bacteria. Proc Natl Acad Sci U S A 2024; 121:e2311127121. [PMID: 38507447 PMCID: PMC10990125 DOI: 10.1073/pnas.2311127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.
Collapse
Affiliation(s)
| | | | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | | | | | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| | | | - Maren L. Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA99164
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA99164
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT84602
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA98686
| |
Collapse
|
4
|
Padhi Y, Chatterjee S. XdfA, a novel membrane-associated DedA family protein of Xanthomonas campestris, is required for optimum virulence, maintenance of magnesium, and membrane homeostasis. mBio 2023; 14:e0136123. [PMID: 37498088 PMCID: PMC10470534 DOI: 10.1128/mbio.01361-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Xanthomonas campestris is an important member of the Xanthomonas group of phytopathogens that causes diseases in crucifers. In X. campestris, several virulence-associated functions, including some belonging to unknown predicted functions, have been implicated in the colonization and disease processes. However, the role of many of these unknown predicted proteins in Xanthomonas-host interaction and their exact physiological function is not clearly known. In this study, we identified a novel membrane-associated protein belonging to the DedA super family, XdfA, which is required for virulence in X. campestris. The DedA family of proteins are generally ubiquitous in bacteria; however, their function and actual physiological role are largely elusive. Characterization of ∆xdfA by homology modeling, membrane localization, and physiological studies indicated that XdfA is a membrane-associated protein that plays a role in the maintenance of membrane integrity. Furthermore, functional homology modeling analysis revealed that the XdfA exhibits structural similarity to a CorA-like magnesium transporter and is required for optimum growth under low magnesium ion concentration. We report for the first time that a putative DedA family of protein in Xanthomonas is required for optimum virulence and plays a role in the maintenance of membrane-associated functions and magnesium homeostasis. IMPORTANCE Bacterial DedA family proteins are involved in a range of cellular processes such as ion transport, signal transduction, and cell division. Here, we have discussed about a novel DedA family protein XdfA in Xanthomonas campestris pv. campestris that has a role in membrane homeostasis, magnesium transport, and virulence. Understanding membrane and magnesium homeostasis will aid in our comprehension of bacterial physiology and eventually will help us devise effective antimicrobial strategies to safeguard horticulturally and agriculturally important crop plants.
Collapse
Affiliation(s)
- Yasobanta Padhi
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Subhadeep Chatterjee
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Three Bacterial DedA Subfamilies with Distinct Functions and Phylogenetic Distribution. mBio 2023; 14:e0002823. [PMID: 36856409 PMCID: PMC10127716 DOI: 10.1128/mbio.00028-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Recent studies in bacteria have suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated our findings to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in archaea, bacteria, and eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and that some bacterial DedA proteins are undecaprenyl phosphate flippases. We performed a phylogenetic analysis of this protein family in bacteria that revealed 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our bioinformatic analysis lays the groundwork for future experimental studies on the role of DedA proteins in maintaining and modifying the membrane.
Collapse
|
6
|
Todor H, Herrera N, Gross C. Three bacterial DedA subfamilies with distinct functions and phylogenetic distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522824. [PMID: 36712119 PMCID: PMC9881974 DOI: 10.1101/2023.01.04.522824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent studies in bacteria suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated it to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA-family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in Archaea, Bacteria, and Eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and some bacterial DedA proteins are undecaprenyl phosphate flippases. We perform a phylogenetic analysis of this protein family in Bacteria revealing 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our analysis lays the groundwork for a deeper understanding of DedA proteins and their role in maintaining and modifying the membrane.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.,Lead Contact
| | - Nadia Herrera
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, San Francisco 94158, CA, USA
| |
Collapse
|
7
|
Hama Y, Morishita H, Mizushima N. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO Rep 2022; 23:e53894. [PMID: 35044051 PMCID: PMC8811646 DOI: 10.15252/embr.202153894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is a central hub for the biogenesis of various organelles and lipid-containing structures. Recent studies suggest that vacuole membrane protein 1 (VMP1) and transmembrane protein 41B (TMEM41B), multispanning ER membrane proteins, regulate the formation of many of these ER-derived structures, including autophagosomes, lipid droplets, lipoproteins, and double-membrane structures for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. VMP1 and TMEM41B possess a DedA domain that is widely distributed not only in eukaryotes but also in prokaryotes and predicted to adopt a characteristic structure containing two reentrant loops. Furthermore, recent studies show that both proteins have lipid scrambling activity. Based on these findings, the potential roles of VMP1 and TMEM41B in the dynamic remodeling of ER membranes and the biogenesis of ER-derived structures are discussed.
Collapse
Affiliation(s)
- Yutaro Hama
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
- Department of PhysiologyGraduate School of MedicineJuntendo UniversityTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|