1
|
Williams NLR, Siboni N, Potts J, Scanes P, Johnson C, James M, McCann V, Reun NL, King WL, Seymour JR. Faecal contamination determines bacterial assemblages over natural environmental parameters within intermittently opened and closed lagoons (ICOLLs) during high rainfall. WATER RESEARCH 2024; 268:122670. [PMID: 39486150 DOI: 10.1016/j.watres.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Intermittently closed and opened lakes and lagoons (ICOLLs) provide important ecosystem services, including food provision and nutrient cycling. These ecosystems generally experience low watershed outflow, resulting in substantial fluctuations in physicochemical parameters that are often compounded by anthropogenic contamination, however, how this impacts the patterns in microbiology within these environments remains uncharacterised. Therefore, we aimed to determine how seasonal heterogeneity in the physicochemical parameters, in comparison to faecal contamination, alter the dynamics of bacterial communities inhabiting ICOLLs on the eastern Australian coast. To address these aims, we sampled four ICOLLs on a monthly basis for one year, using 16S rRNA gene amplicon sequencing to monitor patterns in bacterial diversity and qPCR-based methods to measure faecal contamination from humans (sewage), dogs, and birds. Additionally, we used qPCR to monitor patterns of a suite of antibiotic resistance genes (ARGs) including sulI, tetA, qnrS, dfrA1, and vanB. Differences in bacterial community composition were often associated with temporal shifts in salinity, temperature, pH, dissolved oxygen, and dissolved organic matter, but following periods of high rainfall, bacterial assemblages in two of four ICOLLs changed in direct response to sewage inputs. Within these ICOLLs, indicator taxa for stormwater identified using the 16S rRNA amplicon sequencing data, as well as markers for sewage and dog faeces, and levels of the antibiotic resistance genes (ARGs) sulI, tetA, and dfrA1 were significantly more abundant after rainfall. Notably many of the stormwater indicator taxa were potential human pathogens including Arcobacter and Aeromonas hydrophilia, which also displayed significant correlations, albeit weak to moderate, with levels of the ARGs sulI, tetA, and dfrA1. This broad-scale shift in the nature of the bacterial community following rainfall will likely lead to a substantial, and perhaps detrimental, divergence in the ecosystem services provided by the bacterial assemblages within these ICOLLs. We conclude that following rainfall events, sewage was a principal driver of shifts in the microbiology of ICOLLs exposed to stormwater, while natural seasonal shifts in the physicochemical parameters controlled bacterial communities at other times. Increased occurrence of intense precipitation events is predicted as a ramification of climate change, which will lead to increased impacts of stormwater and sewage contamination on important ICOLL ecosystems in the future.
Collapse
Affiliation(s)
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Melanie James
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Nine Le Reun
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - William L King
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
2
|
Zhao M, Wang X, He J, Zhou K, Xie M, Ding H. Serovar and sequence type distribution and phenotypic and genotypic antimicrobial resistance of Salmonella originating from pet animals in Chongqing, China. Microbiol Spectr 2024; 12:e0354223. [PMID: 38757951 PMCID: PMC11218468 DOI: 10.1128/spectrum.03542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024] Open
Abstract
A total of 334 Salmonella isolates were recovered from 6,223 pet rectal samples collected at 50 pet clinics, 42 pet shops, 7 residential areas, and 4 plazas. Forty serovars were identified that included all strains except for one isolate that did not cluster via self-agglutination, with Salmonella Typhimurium monophasic variant, Salmonella Kentucky, Salmonella Enteritidis, Salmonella Pomona, and Salmonella Give being the predominant serovars. Fifty-one sequence types were identified among the isolates, and ST198, ST11, ST19, ST451, ST34, and ST155 were the most common. The top four dominant antimicrobials to which isolates were resistant were sulfisoxazole, ampicillin, doxycycline, and tetracycline, and 217 isolates exhibited multidrug resistance. The prevalence of β-lactamase genes in Salmonella isolates was 59.6%, and among these isolates, 185 harbored blaTEM, followed by blaCTX-M (66) and blaOXA (10). Moreover, six PMQR genes, namely, including qnrA (4.8%), qnrB (4.2%), qnrD (0.9%), qnrS (18.9%), aac(6')-Ib-cr (16.5%), and oqxB (1.5%), were detected. QRDR mutations (76.6%) were very common in Salmonella isolates, with the most frequent mutation in parC (T57S) (47.3%). Furthermore, we detected six tetracycline resistance genes in 176 isolates, namely, tet(A) (39.5%), tet(B) (8.1%), tet(M) (7.7%), tet(D) (5.4%), tet(J) (3.3%), and tet(C) (1.8%), and three sulfonamide resistance genes in 303 isolates, namely, sul1 (84.4%), sul2 (31.1%), and sul3 (4.2%). Finally, we found 86 isolates simultaneously harboring four types of resistance genes that cotransferred 2-7 resistance genes to recipient bacteria. The frequent occurrence of antimicrobial resistance, particularly in dogs and cats, suggests that antibiotic misuse may be driving multidrug-resistant Salmonella among pets.IMPORTANCEPet-associated human salmonellosis has been reported for many years, and antimicrobial resistance in pet-associated Salmonella has become a serious public health problem and has attracted increasing attention. There are no reports of Salmonella from pets and their antimicrobial resistance in Chongqing, China. In this study, we investigated the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella strains isolated from pet fecal samples in Chongqing. In addition, β-lactamase, QRDR, PMQR, tetracycline and sulfonamide resistance genes, and mutations in QRDRs in Salmonella isolates were examined. Our findings demonstrated the diversity of serovars and sequence types of Salmonella isolates. The isolates were widely resistant to antimicrobials, notably with a high proportion of multidrug-resistant strains, which highlights the potential direct or indirect transmission of multidrug-resistant Salmonella from pets to humans. Furthermore, resistance genes were widely prevalent in the isolates, and most of the resistance genes were spread horizontally between strains.
Collapse
Affiliation(s)
- Meiyuan Zhao
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xudong Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiawei He
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Kexin Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengqi Xie
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
4
|
Zhang K, Li K, Hu F, Xin R, Fan P, Lu Y, Wang N, Qin M, Li R. Occurrence characteristics and influencing factors of antibiotic resistance genes in rural groundwater in Henan Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16685-16695. [PMID: 38319424 DOI: 10.1007/s11356-024-32258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
This study determined the antibiotic-resistant gene (ARG) contents of 34 groundwater samples in Henan Province collected from September to October 2022, then assessed the roles of both water quality parameters and intI1 in ARG propagation in groundwater. The results show that there existed universal ARG pollution in groundwater, and sulfonamides-, β-lactem-, and tetracycline-resistance genes were the most prevalent gene types during the time. Sul1 contributed the majority proportion of the total resistance genes (TARGs). The prevalence of ESBLs gene blaTEM and the occurrence of Carbapenems resistant gene blaOXA-1 suggests the pollution of high-risk ARGs in groundwater demands more attention. IntI1 is prevalent and had a significantly positive correlation with almost 50% ARGs, indicating its contribution to ARG propagation in groundwater. Well types contribute little to ARG propagation in rural groundwater of Henan, which means the protective facilities established by the local government for public wells can effectively prevent contamination from exogenous ARGs. However, the economic level has no impact on the abundance of ARGs in rural groundwater, which suggests the local government should pay greater attention to investment in controlling ARG pollution in Henan rural areas.
Collapse
Affiliation(s)
- Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China.
| | - Kuangjia Li
- Development Research Center, Ministry of Water Resources of People's Republic of China, Beijing, 100032, China
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450000, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Penglin Fan
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Yarou Lu
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Ningning Wang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Mengyuan Qin
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Ruojing Li
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
5
|
Li J, Yang Y, Fan Z, Huang Z, Chen J, Liu Q. Salmonella typhimurium targeting with monoclonal antibodies prevents infection in mice. PLoS Negl Trop Dis 2023; 17:e0011579. [PMID: 38048368 PMCID: PMC10745141 DOI: 10.1371/journal.pntd.0011579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/22/2023] [Accepted: 08/08/2023] [Indexed: 12/06/2023] Open
Abstract
Salmonella is a prevalent foodborne and waterborne pathogens threating global public health and food safety. Given the diversity of Salmonella serotypes and the emergence of antibiotic-resistant strains, there is an urgent need for the development of broadly protective therapies. This study aims to prepare monoclonal antibodies (Mabs) with broad reactivity against multi-serotype Salmonella strains, potentially offering cross-protection. We prepared two Mabs F1D4 and B7D4 against protein FliK and BcsZ, two potential vaccine candidates against multi-serotype Salmonella. The two Mabs belonging to IgG1 isotype exhibited high titers of 1:256,000 and 1:512,000 respectively, as well as broad cross-reactivity against 28 different serotypes of Salmonella strains with percentages of 89.29% and 92.86%, correspondingly. Neutralizing effects of the two Mabs on Salmonella growth, adhesion, invasion and motility was evaluated in vitro using bacteriostatic and bactericidal activity with and without complement and bacterial invasion inhibition assay. Additionally, cytotoxicity assays, animal toxicity analyses, and pharmacokinetic evaluations demonstrated the safety and sustained effectiveness of both Mabs. Furthermore, F1D4 or B7D4-therapy in mice challenged with S. Typhimurium LT2 exhibited milder organs damage and lower Salmonella colonization, as well as the higher relative survival of 86.67% and 93.33% respectively. This study produced two broadly reactive and potential cross protective Mabs F1D4 and B7D4, which offered new possibilities for immunotherapy of salmonellosis.
Collapse
Affiliation(s)
- Jie Li
- Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Yang Yang
- Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhongyi Fan
- Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiqiang Huang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jun Chen
- Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
6
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
7
|
Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int J Mol Sci 2022; 23:ijms23073648. [PMID: 35409007 PMCID: PMC8998546 DOI: 10.3390/ijms23073648] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.
Collapse
|