1
|
Atac N, Gunduz H, Koc I, Onbasli K, Khan M, Savani S, Sennaroglu A, Can F, Acar HY, Kolemen S. Selective antibacterial and antibiofilm activity of chlorinated hemicyanine against gram-positive bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124324. [PMID: 38676983 DOI: 10.1016/j.saa.2024.124324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Antibiotic-free therapies are highly needed due to the limited success of conventional approaches especially against biofilm related infections. In this direction, antimicrobial phototherapy, either in the form of antimicrobial photothermal therapy (aPTT) or antimicrobial photodynamic therapy (aPDT), have appeared to be highly promising candidates in recent years. These are local and promising approaches for antibiotic resistant bacterial infections and biofilms. Organic small photosensitizers (PSs) are extensively preferred in antimicrobial phototherapy applications as they offer a great opportunity to combine therapeutic action (aPTT, aPDT or both) with fluorescence imaging on a single molecule. In this study, the bactericidal effect of cationic chlorinated hemicyanine (Cl-Hem)-based type I PS, which can function as a dual aPDT/aPTT agent, was investigated on both planktonic cells and biofilms of different gram-positive (E. faecalis and S. epidermidis) and gram-negative bacteria (P. aeruginosa and K. pneumoniae) with and without 640 nm laser irradiation. Cl-Hem was shown to induce a selective phototheranostic activity against gram-positive bacteria (E. faecalis and S. epidermidis). Cl-Hem exhibited both dose and laser irradiation time dependent bactericidal effect on planktonic and biofilms of S. epidermidis. These results clearly showed that highly potent Cl-Hem can treat resistant microbial infections, while allowing fluorescence detection at the same time. High biofilm reduction observed with combined aPDT/aPTT action of Cl-Hem together with its non-cytotoxic nature points out that Cl-Hem is a promising PS for antibacterial and antibiofilm treatments.
Collapse
Affiliation(s)
- Nazli Atac
- Koç University, School of Medicine, Medical Microbiology, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University-İşbank Center for Infectious Diseases (KUISCID), Topkapı, Istanbul, Turkiye
| | - Hande Gunduz
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Nanofabrication and Nanocharacterization Centre for Scientific and Technological Advanced Research, Koç University, Istanbul, Turkiye
| | - Irem Koc
- Koç University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Kubra Onbasli
- Istanbul Technical University, Department of Metallurgical and Materials Engineering, Istanbul, Turkiye
| | - Minahil Khan
- Koç University, Department of Physics, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Samira Savani
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Alphan Sennaroglu
- Koç University, Department of Physics, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University, Department of Electrical and Electronics Engineering, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye
| | - Fusun Can
- Koç University, School of Medicine, Medical Microbiology, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye; Koç University-İşbank Center for Infectious Diseases (KUISCID), Topkapı, Istanbul, Turkiye.
| | - Havva Yagci Acar
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye.
| | - Safacan Kolemen
- Koç University, Department of Chemistry, Rumelifeneri Yolu, Sarıyer, Istanbul, Turkiye.
| |
Collapse
|
2
|
Wen L, Luo C, Chen X, Liu T, Li X, Wang M. In vitro Activity of Cefepime/Avibactam Against Carbapenem Resistant Klebsiella pneumoniae and Integrative Metabolomics-Proteomics Approach for Resistance Mechanism: A Single-Center Study. Infect Drug Resist 2023; 16:6061-6077. [PMID: 37719649 PMCID: PMC10503517 DOI: 10.2147/idr.s420898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose We aimed to evaluate the in vitro antibacterial effects of combination of cefepime/avibactam against carbapenem-resistant Klebsiella pneumonia (CRKP) and explore the resistance mechanism of FEP/AVI. Patients and Methods This study explored the in vitro antibacterial activities of ceftazidime/avibactam (CAZ/AVI) and cefepime/avibactam (FEP/AVI) against 40 and 76 CRKP clinical isolates. Proteomics and metabolomics were employed to investigate the resistance mechanisms of CRKP to FEP/AVI. Results FEP/AVI (MIC50/MIC90 0.5/4-64/4 μg/mL, resistance rate 17.1%) showed better antibacterial activity against CRKP than CAZ/AVI (MIC50/MIC90 4/4-128/4 μg/mL, resistance rate 20%) in vitro. Bioinformatics analysis showed that the differentially expressed proteins (DEPs) were enriched in alanine, aspartate and glutamate metabolism, and ribosome. Remarkably, transcriptional and translational activity-related pathways were inhibited in FEP/AVI resistant CRKP. Overlap analysis suggested that H-NS might play an important role in resistance to FEP/AVI in CRKP. The mRNA levels of DEPs-related genes (adhE, gltB, purA, ftsI and hns) showed the same trends as DEPs in FEP/AVI susceptible and resistant strains. FEP/AVI resistant isolates demonstrated stronger biofilm formation capacity than susceptible isolates. Metabolomics results showed that disturbed metabolites were mainly lipids, and adenine was decreased in FEP/AVI resistant CRKP. Conclusion These results indicated that H-NS, GltB and SpoT may directly or indirectly promote biofilm formation of CRKP and led to FEP/AVI resistance, but inhibited ribosomal function. Our study provides a mechanistic insight into the acquisition of resistance to FEP/AVI in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingjun Wen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinyi Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Tianyao Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Lim TP, Ho JY, Teo JQM, Sim JHC, Tan SH, Tan TT, Kwa ALH. In Vitro Susceptibility to Ceftazidime-Avibactam and Comparator Antimicrobial Agents of Carbapenem-Resistant Enterobacterales Isolates. Microorganisms 2023; 11:2158. [PMID: 37764002 PMCID: PMC10534512 DOI: 10.3390/microorganisms11092158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of carbapenem-resistant Enterobacterales (CRE) has been recognized as a significant concern globally. Ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor that has demonstrated activity against isolates producing class A, C, and D β-lactamases. Here-in, we evaluated the in vitro activity of CZA and comparator antimicrobial agents against 858 CRE isolates, arising from the Southeast Asian region, collected from a large tertiary hospital in Singapore. These CRE isolates mainly comprised Klebsiella pneumoniae (50.5%), Escherichia coli (29.4%), and Enterobacter cloacae complex (17.1%). Susceptibility rates to levofloxacin, imipenem, meropenem, doripenem, aztreonam, piperacillin/tazobactam, cefepime, tigecycline, and polymyxin B were low. CZA was the most active β-lactam agent against 68.9% of the studied isolates, while amikacin was the most active agent among all comparator antibiotics (80% susceptibility). More than half of the studied isolates (51.4%) identified were Klebsiella pneumoniae carbapenemase (KPC)-2 producers, 25.9% were New Delhi metallo-β-lactamase (NDM) producers, and Oxacillinase (OXA)-48-like producers made up 10.7%. CZA was the most active β-lactam agent against KPC-2, OXA-48-like, and Imipenemase (IMI) producers (99.3% susceptible; MIC50/90: ≤1/2 mg/L). CZA had excellent activity against the non-carbapenemase-producing CRE (91.4% susceptible; MIC50/90: ≤1/8 mg/L). Expectedly, CZA had no activity against the metallo-β-lactamases (MBL)-producing CRE (NDM- and Imipenemase MBL (IMP) producers; 27.2% isolates), and the carbapenemase co-producing CRE (NDM + KPC, NDM + OXA-48-like, NDM + IMP; 3.0% isolates). CZA is a promising addition to our limited armamentarium against CRE infections, given the reasonably high susceptibility rates against these CRE isolates. Careful stewardship and rational dosing regimens are required to preserve CZA's utility against CRE infections.
Collapse
Affiliation(s)
- Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 20 College Road, Singapore 169856, Singapore;
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Jun-Yuan Ho
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - James Heng-Chiak Sim
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 20 College Road, Singapore 169856, Singapore;
- Department of Microbiology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Si-Hui Tan
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
4
|
Ardebili A, Izanloo A, Rastegar M. Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy? Expert Rev Anti Infect Ther 2023; 21:387-429. [PMID: 36820511 DOI: 10.1080/14787210.2023.2184346] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The increasing prevalence of infections with multidrug-resistant (MDR), extensively-drug resistant (XDR) or difficult-to-treat drug resistant (DTR) Gram-negative bacilli (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter species, and Escherichia coli poses a severe challenge. AREAS COVERED The rapid growing of multi-resistant GNB as well as the considerable deceleration in development of new anti-infective agents have made polymyxins (e.g. polymyxin B and colistin) a mainstay in clinical practices as either monotherapy or combination therapy. However, whether the polymyxin-based combinations lead to better outcomes remains unknown. This review mainly focuses on the effect of polymyxin combination therapy versus monotherapy on treating GNB-related infections. We also provide several factors in designing studies and their impact on optimizing polymyxin combinations. EXPERT OPINION An abundance of recent in vitro and preclinical in vivo data suggest clinical benefit for polymyxin-drug combination therapies, especially colistin plus meropenem and colistin plus rifampicin, with synergistic killing against MDR, XDR, and DTR P. aeruginosa, K. pneumoniae and A. baumannii. The beneficial effects of polymyxin-drug combinations (e.g. colistin or polymyxin B + carbapenem against carbapenem-resistant K. pneumoniae and carbapenem-resistant A. baumannii, polymyxin B + carbapenem + rifampin against carbapenem-resistant K. pneumoniae, and colistin + ceftolozan/tazobactam + rifampin against PDR-P. aeruginosa) have often been shown in clinical setting by retrospective studies. However, high-certainty evidence from large randomized controlled trials is necessary. These clinical trials should incorporate careful attention to patient's sample size, characteristics of patient's groups, PK/PD relationships and dosing, rapid detection of resistance, MIC determinations, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahdieh Izanloo
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Mostafa Rastegar
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Li Y, Guo S, Li X, Yu Y, Yan B, Tian M, Xu B, Hu H. Evaluation of the in vitro synergy of polymyxin B-based combinations against polymyxin B -resistant gram-negative bacilli. Microb Pathog 2022; 166:105517. [DOI: 10.1016/j.micpath.2022.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|