1
|
Liu J, Ahmad AA, Yang C, Zhang J, Zheng J, Liang Z, Wang F, Zhai H, Qin S, Yang F, Ding X. Modulations in gastrointestinal microbiota during postpartum period fulfill energy requirements and maintain health of lactating Tibetan cattle. Front Microbiol 2024; 15:1369173. [PMID: 39228376 PMCID: PMC11368858 DOI: 10.3389/fmicb.2024.1369173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Postpartum period of dairy cattle is an important phase of their life mainly associated with the changes in physiology, rumen function, and energy metabolism. Studies have shown that gut microbial composition undergoes drastic changes during the postpartum period. However, little is known about the temporal variations in digestive tract microbiota in postpartum Tibetan cattle. The aim of this study was to investigate the temporal variations in blood metabolites, ruminal fermentation, and microbial community of oral, rumen, and gut in lactating Tibetan cattle during postpartum. Methods We collected blood, saliva, rumen fluid, and fecal samples from lactating Tibetan cattle during 1st week (1 W), the 2nd week (2 W), the 1st month (1 M), and the 2nd month (2 M) of the postpartum period. The microbiota of saliva, rumen fluid, and fecal samples were assessed using 16S rRNA sequencing. The rumen volatile fatty acid and blood parameters were also quantified. Results The content of volatile fatty acids (VFAs) and blood parameters showed opposite tendency to each other and reached to stability at 2 M. Rumen microbiota showed the highest alpha diversity compared to other two sites. At phylum level, the oral cavity was dominated by Proteobacteria, while most dominant phylum in rumen and feces were Firmicutes and Bacteroidetes, respectively. The dominant genera in oral cavity were Moraxella and Bibersteinia, while genera Prevotella 1 and Ruminococcaceae UCG-005 were dominant in rumen and fecal samples, respectively. Discussion Microbial network analysis revealed that most of the active genera in all networks belonged to phylum Firmicutes, indicating the importance of this phyla during postpartum period of lactating cattle. The functional analysis revealed distinct division of labor among three gastrointestinal sites associated with defense, fatty acid synthesis, and maintaining health of host. All in all, our findings provide insights into the metabolic and microbial changes of lactating Tibetan cattle and help to the improvement of the management strategies.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Chen Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Fang Wang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Huan Zhai
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghong Qin
- Department of Endocrinology, The Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Feng Yang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Chen J, Wang S, Yin X, Duan C, Li J, Liu Y, Zhang Y. Dynamic Changes in the Nutrient Digestibility, Rumen Fermentation, Serum Parameters of Perinatal Ewes and Their Relationship with Rumen Microbiota. Animals (Basel) 2024; 14:2344. [PMID: 39199877 PMCID: PMC11350810 DOI: 10.3390/ani14162344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Changes in physiological and biochemical parameters are crucial for the reproductive performance and health of perinatal ewes. This study investigated the temporal variations in feed intake, nutrient digestibility, serum parameters, and ruminal fermentation on days 21, 14, and 7 before lambing (Q21, Q14, and Q7) and days 3, 7, and 14 after lambing (H3, H7, and H14). The results showed that dry matter intake (DMI) and glucose (Glu) gradually decreased (p < 0.05) before lambing and increased (p < 0.05) after lambing. The digestibility of dry matter (DMD), crude protein (CPD), and acid detergent fiber (ADFD) increased (p < 0.05) before lambing, then decreased (p < 0.05) on day H3, and then increased (p < 0.05) on day H14. The rumen pH, NH3-N, and triglycerides (TG) gradually increased (p < 0.05) before lambing and were higher (p < 0.05) on day Q7 than after lambing. The concentrations of acetate, butyrate, and total volatile fatty acids (T-VFA) were lower (p < 0.05) on day Q7 than those on days Q21 and Q14, then increased (p < 0.05) after lambing. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) concentrations gradually decreased (p < 0.05) in perinatal ewes. BHBA and NEFA concentrations were lower (p < 0.05) on day Q21 than those from days Q14 to H14. The rumen microbiota compositions were different (p < 0.05) in perinatal ewes, and g_Anaerovibrio, g_Lachnobacterium, and g_Schwartzia were positively correlated (p < 0.05) with DMI, Glu, acetate, propionate, and T-VFA, and negatively correlated (p < 0.05) with LDL-C. g_Bacillus was negatively correlated (p < 0.05) with DMI, Glu, acetate, propionate, butyrate, and T-VFA, but positively correlated (p < 0.05) with rumen pH and LDL-C. In summary, the DMI, nutrient digestibility, rumen fermentation, and serum parameters changed during the perinatal period of ewes, and the changes in DMI, serum glucose, acetate, propionate, and T-VFA were related to the rumen bacteria.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Siwei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
- Institute of Cereal and Oil Crops, Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Jinhui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (J.C.); (S.W.); (C.D.); (J.L.); (Y.L.)
| |
Collapse
|
3
|
Kong F, Wang F, Zhang Y, Wang S, Wang W, Li S. Repeated inoculation with rumen fluid accelerates the rumen bacterial transition with no benefit on production performance in postpartum Holstein dairy cows. J Anim Sci Biotechnol 2024; 15:17. [PMID: 38310317 PMCID: PMC10838461 DOI: 10.1186/s40104-023-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The dairy cow's postpartum period is characterized by dramatic physiological changes, therefore imposing severe challenges on the animal for maintaining health and milk output. The dynamics of the ruminal microbiota are also tremendous and may play a crucial role in lactation launch. We aim to investigate the potential benefits of early microbial intervention by fresh rumen microbiota transplantation (RMT) and sterile RMT in postpartum dairy cows. Twelve fistulated peak-lactation dairy cows were selected to be the donors for rumen fluid collection. Thirty postpartum cows were divided into 3 groups as the transplantation receptors respectively receiving 10 L fresh rumen fluid (FR), 10 L sterile rumen fluid (SR), or 10 L saline (CON) during 3 d after calving. RESULTS Production performance, plasma indices, plasma lipidome, ruminal microbiome, and liver transcriptome were recorded. After fresh and sterile RMT, we found that the molar proportion of propionic acid was increased on d 7 in the FR and SR groups and the bacterial composition was also significantly changed when compared with the CON group. A similarity analysis showed that the similarities between the CON group and FR or SR group on d 7 were 48.40% or 47.85%, whereas the similarities between microbiota on d 7 and 21 in the FR and SR groups were 68.34% or 66.85%. Dry matter intake and feed efficiency were not affected by treatments. Plasma β-hydroxybutyrate concentration in the FR group was decreased and significantly different lipids mainly included phosphatidylcholine and lysophosphatidylcholine containing polyunsaturated fatty acids. Hepatic transcriptomics analysis indicated acute-phase response pathways were upregulated in the SR group. CONCLUSIONS Our study suggests that RMT can shorten the transition process of the ruminal microbiota of postpartum dairy cows with no benefit on dry matter intake or feed efficiency. Inoculation with rumen fluid may not be a useful approach to promote the recovery of postpartum dairy cows.
Collapse
Affiliation(s)
- Fanlin Kong
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Feiran Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yijia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Shuo Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Wei Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Shengli Li
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Ghaffari MH, Daniel JB, Sadri H, Schuchardt S, Martín-Tereso J, Sauerwein H. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in blood serum. J Dairy Sci 2024; 107:1263-1285. [PMID: 37777004 DOI: 10.3168/jds.2023-23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - J B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|