1
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
2
|
Ni J, Zhang Y, Zhai S, Xiong H, Ming Y, Ma Y. Preparation of valine-curcumin conjugate and its in vitro antibacterial and antitumor activity and in vivo biological effects on American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109615. [PMID: 38719095 DOI: 10.1016/j.fsi.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Curcumin (Cur) exhibits diverse natural pharmacological activities, despite its limited water solubility (hydrophobicity) and low bioavailability. In this investigation, a valine-curcumin conjugate (Val-Cur) was synthesized through amino acid side chain modification, and its solubility increased to 1.78 mg/mL. In vitro experimental findings demonstrated that the antibacterial activity of Val-Cur against Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, and Vibrio parahaemolyticus was significantly superior to that of Cur. The inhibition rate of Val-Cur against HepG2 (human hepatocellular carcinoma) cells was higher than that of Cur at low concentrations (below 25 μmol/L), although the IC50 value of Val-Cur did not differ significantly from that of Cur. In vivo biological effects of Val-Cur were assessed by adding it into the feed (150 mg/kg) of American eels (Anguilla rostrata). Val-Cur significantly improved the growth performance (↑weight gain rate, ↑specific growth rate, and ↓feed conversion rate) and activities of intestinal digestive enzymes (amylase and lipase) and antioxidant enzymes (superoxide dismutase) in American eels. Additionally, Val-Cur significantly improved serum biochemical indices (↑high-density lipoprotein cholesterol, ↓low-density lipoprotein cholesterol, ↓aspartate and alanine aminotransferases). Furthermore, Val-Cur increased intestinal microbial diversity, reduced the abundance of potentially pathogenic bacteria (Spiroplasma, Clostridium, and Pseudomonas), and elevated the abundance of beneficial digestion-promoting bacteria (Romboutsia, Phyllobacterium, Romboutsia sedimentorum, and Clostridium butyricum) conducive to glucose metabolism (P < 0.05). To the best of our knowledge, this study is the first to explore water-soluble curcumin in aquaculture, and the findings will lay the groundwork for the potential application of water-soluble curcumin in the field of aquaculture.
Collapse
Affiliation(s)
- Jing Ni
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yue Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Shaowei Zhai
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Yanlin Ming
- Key Laboratory of Xiamen City for Plant Introduction & Quarantine and Plant Product, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, 361002, China.
| | - Ying Ma
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Qi LX, Wang XT, Huang JP, Yue TY, Lu YS, San DM, Xu YX, Han YT, Guo XY, Xie WD, Zhou YX. Silver Nanoparticles Encapped by Dihydromyricetin: Optimization of Green Synthesis, Characterization, Toxicity, and Anti-MRSA Infection Activities for Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:5255. [PMID: 38791295 PMCID: PMC11120860 DOI: 10.3390/ijms25105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 μg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ling-Xiao Qi
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Jin-Ping Huang
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Ting-Yan Yue
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yun-Shu Lu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yu-Xun Xu
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Ya-Tong Han
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xiang-Yi Guo
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Wei-Dong Xie
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (L.-X.Q.); (X.-T.W.); (J.-P.H.); (T.-Y.Y.); (Y.-S.L.); (D.-M.S.); (Y.-X.X.); (Y.-T.H.); (X.-Y.G.)
| |
Collapse
|
4
|
Pamanji R, Kumareshan TN, Priya S L, Sivan G, Selvin J. Exploring the impact of antibiotics, microplastics, nanoparticles, and pesticides on zebrafish gut microbiomes: Insights into composition, interactions, and health implications. CHEMOSPHERE 2024; 349:140867. [PMID: 38048833 DOI: 10.1016/j.chemosphere.2023.140867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
This review addresses the impact of various chemical entities like pesticides, antibiotics, nanoparticles and microplastic on gut microbiota of zebrafish. Gut microbiota plays a vital role in metabolic regulation in every organism. As majority of metabolic pathways coordinated by microbiota, small alterations associated with mild to serious outcomes. Because of their unstoppable usage in day-to-day life, the present-day research on gut microbiota is mostly comprising aforementioned chemicals. It is better to understand how gut microbiome is dysbiosed by various environmental factors, to keep our microbiota safe. We tried to delineate the natural flora of zebrafish gut microbiome and the metabolic and other pathways associated and what are the common flora that was dysbiosed during the treatment. Based on the existing literature, we reviewed pesticides like Imazalil, Difenoconazole, Chlorpyrifos, Metamifop, Carbendazim, Imidacloprid, Phoxim, Niclosamide, Dieldrin, and antibiotics like Oxytetracycline, Enrofloxacin, Florfenicol, Sulfamethoxazole, Tetracycline, Streptomycin, Doxycycline, and in the category of nanoparticles, Titanium dioxide nanoparticles (nTiO2), Abalone viscera hydrolysates decorated silver nanoparticles (AVH-AgNPs), Lead-halide perovskite nanoparticles (LHP NPs), Copper nanoparticles (Cu-NPs), silver nanoparticles (Ag-NPs) and microplastic types like polyethylene and polystyrene microplastic. Other studies with miscellaneous chemical entities on zebrafish gut microbiome include Ferulic acid, Polychlorinated biphenyls, Cadmium, Disinfection by-products, Triclosan, microcystin-LR, Fluoride, and Amitriptyline.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India.
| | - T N Kumareshan
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Lakshmi Priya S
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Gisha Sivan
- Division Medical Research, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| |
Collapse
|
5
|
Khursheed S, Dutta J, Ahmad I, Rather MA, Badroo IA, Bhat TA, Ahmad I, Amin A, Shah A, Qadri T, Habib H. Biogenic silver nanoparticles: Synthesis, applications and challenges in food sector with special emphasis on aquaculture. Food Chem X 2023; 20:101051. [PMID: 38144846 PMCID: PMC10740048 DOI: 10.1016/j.fochx.2023.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Aquaculture, a rapidly expanding global food sector faces challenges like pathogenic infections, water quality management and sustainability. Silver nanoparticles (AgNPs) have emerged as promising tools in aquaculture due to their antimicrobial, antiviral and antifungal properties. AgNPs offer alternatives to traditional antimicrobial agents. Their small size and unique physicochemical properties enhance antimicrobial activity, effectively inhibiting pathogen growth and reducing disease incidence in aquatic organisms. Additionally, AgNPs can improve water quality by catalyzing the removal of pollutants, heavy metals and nutrients, reducing environmental impacts. Despite their potential benefits, several challenges and knowledge gaps exist in the utilization of AgNPs in aquaculture. Addressing challenges related to regulation, sustainability and environmental impact will be crucial for realizing their full potential in the industry. Therefore, the present review aims to provide insight into the role of AgNPs, its challenges in aquaculture and also highlights key areas for future research.
Collapse
Affiliation(s)
- Saba Khursheed
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Irfan Ashraf Badroo
- Government Degree College Women Sopore, Kashmir, Jammu and Kashmir 193201, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Irfan Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries, Rangil, Ganderbal, SKUAST-Kashmir, 190006, India
| | - Azra Shah
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Tahiya Qadri
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Thirugnanasambandan T, Gopinath SCB. Nanomaterials in food industry for the protection from mycotoxins: an update. 3 Biotech 2023; 13:64. [PMID: 36718411 PMCID: PMC9883371 DOI: 10.1007/s13205-023-03478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
The storage of food grains against the fungal infection has been a great challenge to the farmers, but nanotechnology provides a solution to address this problem. The application of nanotechnology for the storage of food grains replaces synthetic fungicides in agriculture. Inorganic nanoparticles such as silver and zinc oxide are well-known for their antifungal activity. Green synthesized nanoparticles show enhanced antimicrobial activity than the chemically synthesized nanoparticles. Extracts and essential oils derived from plants exhibit very good antifungal properties. The synthesized nanoparticles can be impregnated in packaging materials, which are used to store food grains. Natural materials are having advantages like non-toxicity and easier to degrade and are suitable for food safety. This overview discusses the nanomaterials-mediated protection of food materials from mycotoxin and its releases into the open environment.
Collapse
Affiliation(s)
- Theivasanthi Thirugnanasambandan
- International Research Centre, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil, 626126 Tamilnadu India
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis Malaysia
| |
Collapse
|