1
|
Shi B, Yuan H, Wang Z, Fan Y, Qin G, Xiaoqian L, Wang L, Tu H, Hou H. Biocontrol activity and potential mechanism of volatile organic compounds from Aspergillus niger strain La2 against pear Valsa canker. PEST MANAGEMENT SCIENCE 2024; 80:3010-3021. [PMID: 38318950 DOI: 10.1002/ps.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yangyang Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Xiaoqian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
2
|
Romero-Cuadrado L, Picos MC, Camacho M, Ollero FJ, Capote N. Biocontrol of almond canker diseases caused by Botryosphaeriaceae fungi. PEST MANAGEMENT SCIENCE 2024; 80:1839-1848. [PMID: 38050948 DOI: 10.1002/ps.7919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Botryosphaeria dieback is a canker disease caused by fungal species of the Botryosphaeriaceae family that threatens almond productivity. The most common control measure to prevent canker development is the application of fungicides which are being phased out by European Union regulations. In the present study, two sets of bacterial strains were evaluated for their antifungal activity against pathogenic Botryosphaeriaceae species through in vitro and in vivo antagonism assays. RESULTS The rhizospheric bacteria Pseudomonas aeruginosa AC17 and Bacillus velezensis ACH16, as well as the endophytic bacteria Bacillus mobilis Sol 1-2, respectively inhibited 87, 95, and 63% of the mycelial growth of Neofusicoccum parvum, Botryosphaeria dothidea, Diplodia seriata, and Macrophomina phaseolina. Additionally, they significantly reduced the length of lesions caused by N. parvum and B. dothidea in artificially inoculated detached almond twigs. All these bacterial strains produce hydrolytic enzymes that are able to degrade the fungal cell wall. P. aeruginosa AC17 also produces toxic volatile compounds, such as hydrogen cyanide. This strain was the most effective in controlling Botryosphaeria dieback in planta under controlled conditions at a level similar to the biocontrol agent Trichoderma atroviride and standard chemical fungicide treatments. CONCLUSION Pseudomonas aeruginosa AC17 is the best candidate to be considered as a potential biocontrol agent against Botryosphaeriaceae fungi affecting almond. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Romero-Cuadrado
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las Torres, Seville, Spain
| | - María Cinta Picos
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las Torres, Seville, Spain
| | - María Camacho
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las Torres, Seville, Spain
| | | | - Nieves Capote
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las Torres, Seville, Spain
| |
Collapse
|
3
|
Song C, Zhang Y, Zhao Q, Chen M, Zhang Y, Gao C, Jia Z, Song S, Guan J, Shang Z. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear. Microbiol Res 2024; 278:127531. [PMID: 37871540 DOI: 10.1016/j.micres.2023.127531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Previous research on Bacillus aryabhattai has mainly focused on bioremediation, biosynthesis, and promotion of plant growth, whereas the function of B. aryabhattai on antifungal activity remains to be explored. In this study, we isolated a biocontrol bacterium with antagonistic activity against post-harvest pathogenic fungi by releasing volatile organic compounds (VOCs). We aimed to assess the effectiveness of VOCs produced by B. aryabhattai in prevention of the development of blue mold caused by Penicillium expansum in the Huangguan pear, and reveal the inhibitory mechanism against the pathogenic fungi. Using molecular methods, the biocontrol bacterium was identified as Bacillus aryabhattai AYG1023. 2-Nonanol was identified as the main VOC by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). It showed strong inhibition of mycelial growth and conidial germination when treated at the minimum inhibitory concentration (MIC). Scanning and transmission electron microscopy showed that 2-nonanol caused abnormal changes in mycelial and conidial ultrastructure. 2-Nonanol also damaged the integrity of fungal cell membranes and reduced the ergosterol content to 44.77% of P. expansum. In addition, the production of secondary metabolites in P. expansum including patulin and citrinin was significantly reduced by 2-nonanol. Transcriptome analysis revealed that 2-nonanol modulated the expression of genes involved in development, and conidiation pathways, as well as secondary metabolite biosynthesis including steroid biosynthesis, citrinin production and patulin production. Furthermore, blue mold was completely inhibited by treatment with 0.04 μL mL-1 2-nonanol for 48 h on the Huangguan pear. In conclusion, Bacillus aryabhattai AYG1023 was identified as a promising and efficient agent for controlling post-harvest diseases via the release of VOCs, and the outcome of this study lays a theoretical foundation for future applications.
Collapse
Affiliation(s)
- Cong Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, China; Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Mengyao Chen
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Yu Zhang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China.
| | - Zhonglin Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
4
|
Yuan H, Shi B, Wang Z, Qin G, Hou H, Tu H, Wang L. Exploration of the Biocontrol Activity of Bacillus atrophaeus Strain HF1 against Pear Valsa Canker Caused by Valsa pyri. Int J Mol Sci 2023; 24:15477. [PMID: 37895155 PMCID: PMC10607598 DOI: 10.3390/ijms242015477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Valsa pyri-induced pear Valsa canker is among the most prevalent diseases to impact pear quality and yields. Biocontrol strategies to control plant disease represent an attractive alternative to the application of fungicides. In this study, the potential utility of Bacillus atrophaeus strain HF1 was assessed as a biocontrol agent against pear Valsa canker. Strain HF1 suppressed V. pyri mycelium growth by 61.20% and induced the development of malformed hyphae. Both culture filtrate and volatile organic compounds (VOCs) derived from strain HF1 were able to antagonize V. pyri growth. Treatment with strain HF1-derived culture filtrate or VOCs also induced the destruction of hyphal cell membranes. Headspace mixtures prepared from strain HF1 were analyzed, leading to the identification of 27 potential VOCs. Of the thirteen pure chemicals tested, iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibited the strongest antifungal effects on V. pyri, with respective EC50 values of 0.30, 6.65, and 74.07 μL L-1. Fumigation treatment of pear twigs with each of these three compounds was also sufficient to prevent the development of pear Valsa canker. As such, these results demonstrate that B. atrophaeus strain HF1 and the volatile compounds iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibit promise as novel candidate biocontrol agents against pear Valsa canker.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| |
Collapse
|