1
|
Kaur M, Mishra RC, Lahane V, Kumari A, Yadav AK, Garg M, Barrow CJ, Goel M. Chemical characterization and biological activity of Curvularia Lunata, an endophytic fungus isolated from lemongrass (Cymbopogon citratus). Braz J Microbiol 2024:10.1007/s42770-024-01503-x. [PMID: 39235713 DOI: 10.1007/s42770-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Exploration of medicinal plants for bioactive-producing endophytic fungi is a relatively unmapped source of pharmaceutically important compounds. In this study, the endophytic fungus Curvularia lunata AREF029 isolated from the medicinal plant Cymbopogon citratus (known as lemongrass) was assessed for its biological activity. The methanolic extract of AREF029 had minimum inhibition concentration (MIC) ranging from 38 to 174 µg/ml against phytopathogenic fungi Alteranria solani, Fusarium oxysporum and Rhizoctonia solani. Furthermore, the AREF029 methanolic extract displayed a broad-spectrum MIC of 25 µg/ml in the case of Staphylococcus aureus, Salmonella typhimurium and MRSA (methicillin-resistant S. aureus). In vitro cytotoxicity analysis with murine macrophage cell line RAW 264.7 determined 56% nitric oxide inhibition activity at 200 µg/ml concentration of the extract and more than 99% cell viability. Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analyses showed the presence of methoxy-5-methyl-4-oxo-2,5-hexadienoic acid (penicillic acid), phthalic acid, bis (7-methyloctyl) ester, 8-hydroxyquinoline, tetroquinone, curvulamine, Curvuleremophilane B/D, Chromonilinc acid A/C and other putative bioactive compounds in the extract. The current investigation supports the significance of the endophytic fungus C. lunata as a source of potent antibacterial, antifungal and anti-inflammatory compounds.
Collapse
Affiliation(s)
- Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gual Pahari, Gurugram, Haryana, 122001, India
| | - Rahul C Mishra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gual Pahari, Gurugram, Haryana, 122001, India
- Molecular Biology Department, Zero Cow Factory, Gujarat, Surat, 394510, India
| | - Vaibhavi Lahane
- Analytical Sciences & Accredited Testing Services Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Akhilesh K Yadav
- Analytical Sciences & Accredited Testing Services Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Geelong, VIC, 3220, Australia
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gual Pahari, Gurugram, Haryana, 122001, India.
| |
Collapse
|
2
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
3
|
Abhijith Shankar PS, Parida P, Bhardwaj R, Yadav A, Swapnil P, Seth CS, Meena M. Deciphering molecular regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) signalling networks in Oryza genus amid environmental stress. PLANT CELL REPORTS 2024; 43:185. [PMID: 38951279 DOI: 10.1007/s00299-024-03264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.
Collapse
Affiliation(s)
- P S Abhijith Shankar
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Pallabi Parida
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| |
Collapse
|
4
|
Jain D, Meena M, Janmeda P, Seth CS, Arora J. Analysis of Quantitative Phytochemical Content and Antioxidant Activity of Leaf, Stem, and Bark of Gymnosporia senegalensis (Lam.) Loes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1425. [PMID: 38891234 PMCID: PMC11174610 DOI: 10.3390/plants13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
To the best of our knowledge, there was no prior report providing valuable preliminary data through a demonstration of the quantitative phytochemical and antioxidant activity of Gymnosporia senegalensis. The total contents of phenols, flavonoid, flavanol, tannin, and saponin were evaluated from different fractions extracted from the leaf, stem, and bark of G. senegalensis by using standards such as gallic acid, quercetin, rutin, tannic acid, and saponin quillaja. The antioxidant potential was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide scavenging (H2O2), superoxide anion radical scavenging, metal chelating ferrous ion, ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC). Data were subjected to half-inhibitory concentration (IC50) and one-way analysis of variance (ANOVA) at p < 0.05 as a significant value. The total phenol content was found to be highest in the chloroform extract of stem at 97.7 ± 0.02 mg GAE/g. The total flavonoid and flavonol contents in the aqueous extract were 97.1 ± 0.03 mg QE/g and 96.7 ± 0.07 mg RE/g, respectively. The total tannin content in the ethyl acetate extract of leaf was 97.5 ± 0.01 mg TAE/g, and the total saponin content in the methanol extract of stem was 79.1 ± 0.06 mg SQE/g. The antioxidant analysis indicated that IC50 and percentage (%) inhibition were dose-dependent and showed the highest antioxidant activity (40.9 ± 0.9 µg/mL) in methanol extract of leaf for DPPH, (88.8 ± 1.12 µg/mL) in the chloroform extract of stem for H2O2, (43.9 ± 0.15 µg/mL) in the aqueous extract of bark for superoxide anion radical scavenging activity, (26.9 ± 0.11 µg/mL) in the chloroform extract of leaf for the metal chelating ferrous ion activity, (7.55 ± 0.10 mg/mL) in the benzene extract of leaf for FRAP, and (2.97 ± 0.01 mg/mL) in the methanol extract of bark for TAC. These results show that G. senegalensis has great potential in antioxidant activities. The isolation and characterization of specific bioactive compounds and the in vivo applicability of such activity await further extensive studies for drug discovery and development.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | | | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India;
| |
Collapse
|
5
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
6
|
Abd-El-Aziz AS, Abed NN, Mahfouz AY, Fathy RM. Production and characterization of melanin pigment from black fungus Curvularia soli AS21 ON076460 assisted gamma rays for promising medical uses. Microb Cell Fact 2024; 23:68. [PMID: 38408972 PMCID: PMC10895916 DOI: 10.1186/s12934-024-02335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Owing to the growing need for natural materials in different fields, studying melanin production from biological sources is imperative. In the current study, the extracellular melanin pigment was produced by the fungus Curvularia soli AS21 ON076460. The factors that affect the production of melanin were optimized by the Plackett-Burman design (P-BD). The effect of gamma irradiation on melanin productivity was investigated. The maximum melanin yield (3.376 mg/L) was elicited by a stimulus of gamma irradiation at 1.0 kGy. The results evoked that, Curvularia soli AS21 ON076460 melanin exhibited excellent antimicrobial activity against all tested bacteria and fungi. Klebsiella pneumoniae ATCC 13883 and P. digitatum were mostly affected by melanin registering the inhibition zone diameters of 37.51 ± 0.012 and 44.25 ± 0.214 mm, respectively. Moreover, Curvularia soli AS21 ON076460 melanin indicated a significant antiviral efficacy (77% inhibition) of Herpes simplex virus (HSV1). The melanin pigment showed antioxidant activities with IC50 of 42 ± 0.021 and 17 ± 0.02 µg/mL against DPPH and NO, respectively. Melanin had cytotoxic action against human breast cancer and skin cancer cell lines (Mcf7and A431) as well as exerting a low percentage of cell death against normal skin cell lines (Hfb4). Melanin was effective in wound management of human skin cells by 63.04 ± 1.83% compared with control (68.67 ± 1.10%). The novelty in the study is attributed to the possibility of using gamma rays as a safe method in small economic doses to stimulate melanin production from the fungi that have been isolated. In summary, melanin produced from fungi has significant biological activities that encourage its usage as a supportive medical route.
Collapse
Affiliation(s)
- Amira S Abd-El-Aziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Nermine N Abed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Rasha Mohammad Fathy
- Drug Radiation Research Department, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| |
Collapse
|
7
|
Mahajan S, Chakraborty A, Bisht MS, Sil T, Sharma VK. Genome sequencing and functional analysis of a multipurpose medicinal herb Tinospora cordifolia (Giloy). Sci Rep 2024; 14:2799. [PMID: 38307917 PMCID: PMC10837142 DOI: 10.1038/s41598-024-53176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Tinospora cordifolia (Willd.) Hook.f. & Thomson, also known as Giloy, is among the most important medicinal plants that have numerous therapeutic applications in human health due to the production of a diverse array of secondary metabolites. To gain genomic insights into the medicinal properties of T. cordifolia, the genome sequencing was carried out using 10× Genomics linked read and Nanopore long-read technologies. The draft genome assembly of T. cordifolia was comprised of 1.01 Gbp, which is the genome sequenced from the plant family Menispermaceae. We also performed the genome size estimation for T. cordifolia, which was found to be 1.13 Gbp. The deep sequencing of transcriptome from the leaf tissue was also performed. The genome and transcriptome assemblies were used to construct the gene set, resulting in 17,245 coding gene sequences. Further, the phylogenetic position of T. cordifolia was also positioned as basal eudicot by constructing a genome-wide phylogenetic tree using multiple species. Further, a comprehensive comparative evolutionary analysis of gene families contraction/expansion and multiple signatures of adaptive evolution was performed. The genes involved in benzyl iso-quinoline alkaloid, terpenoid, lignin and flavonoid biosynthesis pathways were found with signatures of adaptive evolution. These evolutionary adaptations in genes provide genomic insights into the presence of diverse medicinal properties of this plant. The genes involved in the common symbiosis signalling pathway associated with endosymbiosis (Arbuscular Mycorrhiza) were found to be adaptively evolved. The genes involved in adventitious root formation, peroxisome biogenesis, biosynthesis of phytohormones, and tolerance against abiotic and biotic stresses were also found to be adaptively evolved in T. cordifolia.
Collapse
Affiliation(s)
- Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Titas Sil
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
8
|
Jain D, Meena M, Singh D, Janmeda P. Structural characterisation of bioactive compounds of Gymnosporia senegalensis (Lam.) Loes. using advanced analytical technique like FT-IR, GC-MS and 1H-NMR spectroscopy. Nat Prod Res 2023:1-11. [PMID: 37837421 DOI: 10.1080/14786419.2023.2269460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The present investigation was carried out to characterise bioactive components from G. senegalensis by using Fourier-transform infra-red (FT-IR) spectroscopy, 1H-nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The FTIR analysis confirmed the presence of > CH2, -CH3, C = C-C, C-H, C-F, C = C, -C = N-, C-C = N-, and -OH functional groups. The 1H-NMR spectrum revealed the presence of structures of four bioactive compounds i.e. tetratetracontana derivative, β-carotene, amyrin, and terpineol. GC-MS revealed the presence of different types of high and low molecular weight chemical entities with varying quantities including volatile and essential oil, monoterpenoid, tetraterpenoid, carotenoid, terpenoid, triterpenes, and nortriterpenes. From the results, it could be concluded that G. senegalensis contains various bioactive compounds of biological and pharmacological importance. Overall, this study will provide insight into the characterisation and development of drugs from medicinal plants.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
9
|
Arora J, Kanthaliya B, Joshi A, Meena M, Meena S, Siddiqui MH, Alamri S, Devkota HP. Evaluation of Total Isoflavones in Chickpea ( Cicer arietinum L.) Sprouts Germinated under Precursors ( p-Coumaric Acid and L-Phenylalanine) Supplementation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2823. [PMID: 37570977 PMCID: PMC10421377 DOI: 10.3390/plants12152823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Cicer arietinum L. (Bengal gram, chickpea) is one of the major pulse crops and an important part of traditional diets in Asia, Africa, and South America. The present study was conducted to determine the changes in total isoflavones during sprouting (0, 3, and 7 days) along with the effect of two precursor supplementations, p-coumaric acid (p-CA) and L-phenylalanine (Phe), in C. arietinum. It was observed that increasing sprouting time up to the seventh day resulted in ≈1282 mg 100 g-1 isoflavones, which is approximately eight times higher than chickpea seeds. The supplementation of Phe did not affect the total length of sprouts, whereas the supplementation of p-CA resulted in stunted sprouts. On the third day of supplementation with p-CA (250 mg L-1), the increase in the total phenolic content (TPC) (80%), daidzein (152%), and genistin (158%) contents were observed, and further extending the supplementation reduced the growth of sprouts. On the seventh day of supplementation with Phe (500 mg L-1), the increase in TPC by 43% and genistin content by 74% was observed compared with non-treated sprouts; however, the total isoflavones content was found to be 1212 mg 100 g-1. The increased TPC was positively correlated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (r = 0.787) and ferric-reducing antioxidant potential (FRAP) (r = 0.676) activity. This study suggests that chickpea sprouts enriched in TPC and antioxidants can be produced by the appropriate quantity of precursor supplementation on a particular day. The results indicated major changes in the phytochemical content, especially daidzein and genistin. It was also concluded that the consumption of 100 g of seventh-day sprouts provided eight times higher amounts of isoflavones in comparison to chickpea seeds.
Collapse
Affiliation(s)
- Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Bhanupriya Kanthaliya
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Supriya Meena
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India (A.J.)
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| |
Collapse
|
10
|
Zehra A, Meena M, Jadhav DM, Swapnil P, Harish. Regulatory Mechanisms for the Conservation of Endangered Plant Species, Chlorophytum tuberosum—Potential Medicinal Plant Species. SUSTAINABILITY 2023; 15:6406. [DOI: 10.3390/su15086406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The present review paper is an attempt to examine and provide an overview of the various conservation strategies and regulatory framework to protect endangered plants, including Chlorophytum tuberosum, popularly known as Safed Musli in the local language. C. tuberosum belongs to the family Liliaceae and is being used in the indigenous systems of medicine as a galactagogue, aphrodisiac, antitumor, immunomodulatory, antidiabetic, analgesic, anti-inflammatory, hypolipidemic, anti-ageing, antimicrobial, etc. This plant has great medicinal and commercial value and is part of the Biological Diversity Act, but due to a lack of effective conservation, it is on the verge of extinction because of natural and manmade reasons, such as loss of habitat, climate change, pollution, excessive harvesting, etc. The most valuable medicinal plants have great importance; hence, many conservation techniques are being employed to protect them. In furtherance to the conservation of such plant species, strategic efforts, in the form of laws and policies, are laid; however, existing legislative mechanisms and policy parameters are not sufficient to overcome the challenges of conservation of such plant species, including Safed Musli, hence, this plant has been considered as a critically endangered plant in India. It is pertinent to note that we do not have specific legislation enacted for the protection of plant species; however, efforts are being made to conserve it under various laws, such as the Forest Conservation Act, Biological Diversity Act 2002, and many other allied legislations. This basic legislation of the Biological Diversity Act also lacks focal attention on the conservation of endangered plant species. Moreover, decentralization of power and actual community participation in conservation practices are also missing. A cumulative effect of both scientific measures and legal mechanisms supported by community participation may produce better results in the conservation of plant species, including Safed Musli. The protection of rich sources and biological diversity is not being taken as seriously as it ought to be, hence, it is necessary to improve awareness and public participation in conservation techniques with effective legislation for the conservation of highly endangered plant species.
Collapse
Affiliation(s)
- Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Dhanaji M. Jadhav
- Symbiosis Law School, Symbiosis International University, Pune 412115, Maharashtra, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda 151401, Punjab, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| |
Collapse
|