1
|
Zhi Y, Li T, Li Y, Zhang T, Du M, Zhang Q, Wang X, Hu G. Protective role of Cecropin AD against LPS-induced intestinal mucosal injury in chickens. Front Immunol 2023; 14:1290182. [PMID: 38162646 PMCID: PMC10757607 DOI: 10.3389/fimmu.2023.1290182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Cecropin AD (CAD), a renowned antimicrobial peptide, has shown promising potential in treating various bacterial infections. This study investigates the protective effects of CAD against lipopolysaccharide (LPS)-induced intestinal adversities in chickens. Methods Sixty SPF-grade chicks were divided into groups and exposed to different dosages of CAD, followed by LPS administration. The study assessed the impact of CAD on intestinal mucosal injury markers, oxidative stress, and inflammation. Results LPS significantly increased Diamine oxidase (DAO) and D-lactate (D-LA) levels, both indicators of intestinal mucosal injury. CAD treatment substantially attenuated these elevations, particularly at higher dosages. Additionally, CAD markedly reduced oxidative stress in intestinal tissues, as shown by normalized antioxidant levels and decreased reactive oxygen species. Histological analysis supported these findings, showing better-preserved villi structures in CAD-treated groups. Furthermore, CAD significantly reduced IL-6 and IL-8 expression post-LPS stimulation and effectively regulated the NLRP3 inflammasome pathway, decreasing associated factors like NLRP3, Caspase-1, IL-1b, and IL-18. Discussion The study demonstrates CAD's therapeutic potential in alleviating LPS-induced intestinal injuries. The protective effects are primarily attributed to its anti-inflammatory and antioxidative actions and modulation of the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yan Zhi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tingyu Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaxuan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tao Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mengze Du
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, the Key Laboratory of Otolaryngology-Head and Neck Surgery (Ministry of Education of China), Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Liu S, Xiao G, Wang Q, Zhang Q, Tian J, Li W, Gong L. Effects of Dietary Bacillus subtilis HC6 on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Health in Broilers. Animals (Basel) 2023; 13:2915. [PMID: 37760314 PMCID: PMC10526030 DOI: 10.3390/ani13182915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the impact of Bacillus subtilis HC6 on the growth performance, immunity, antioxidant capacity, and intestinal health of broilers. A total of 180 one-day-old white feather broilers were randomly divided into two experimental groups, each comprising six replicates of fifteen chicks from 1 to 50 d of age. The groups were either fed a basal diet (CON) or the same diet supplemented with 5 × 108 cfu/kg of Bacillus subtilis HC6 (BS). Our results indicated that compared with the CON, dietary supplementation with BS increased feed efficiency during d 21-50 and d 1-50 (p < 0.05). Moreover, BS supplementation enhanced antioxidant capacity in the serum and liver, and also decreased the activity of diamine oxidase and the level of endotoxins (p < 0.05). Additionally, BS treatment increased the villi height in the jejunum and ileum, increased the ratio of villus height/crypt depth in the ileum, upregulated the expression of tight junction proteins in the jejunal mucosa, and downregulated the levels of IL-22 and IFN-γ on day 50 (p < 0.05). Principal coordinates analysis yielded clear clustering of two groups; dietary BS increased the relative abundance of Bacteroidales_unclassified (genus) and Olsenella (genus), and decreased the abundance of genera Alistipes on day 50, which identified a strong correlation with FCR, serum differential metabolites, or differential gene expression in the jejunal mucosa by spearman correlation analysis. The PICRUSt2 analysis revealed that supplementation with BS enriched the pathways related to xenobiotics biodegradation and metabolism, carbohydrate metabolism, energy metabolism, signaling molecules and interaction, the digestive system, and transport and catabolism. These results demonstrated that dietary BS increased feed efficiency, antioxidant capacity, and the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa; and decreased the activity of diamine oxidase in serum, which might be attributed to the modulation of community composition and the functions of cecal microbiota in white-feathered broilers.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Qi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Weifen Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| |
Collapse
|
3
|
Wang H, Song W, Yuan W, Zhou Q, Sadiq FA, Zhao J, Wu W, Lu W. Modulating the Human Gut Microbiota through Hypocaloric Balanced Diets: An Effective Approach for Managing Obesity. Nutrients 2023; 15:3101. [PMID: 37513521 PMCID: PMC10383620 DOI: 10.3390/nu15143101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate the effects of a hypocaloric balanced diet (HBD) on anthropometric measures and gut microbiota of 43 people with obesity. Fecal samples were collected from the study subjects at weeks 0 and 12, and a detailed analysis of gut microbiota was performed using 16S rRNA gene sequencing. By comparing anthropometric measures and microbiota changes in subjects before and after the HBD intervention, we revealed the potential effects of HBD on weight loss and gut microbiota. Our results indicated that the HBD resulted in a significant decrease in body mass index (BMI), and most of the physiological indicators were decreased to a greater degree in the effective HBD group (EHBD, weight loss ≥ 5%) than in the ineffective HBD group (IHBD, weight loss < 5%). The HBD intervention also modified the gut microbiota of the subjects with obesity. Specifically, Blautia, Lachnoclostridium, Terrisporobacter, Ruminococcus (R. torques, R. gnavus), and Pseudomonas were significantly reduced. In addition, we employed machine learning models, such as XGBRF and GB models, to rank the importance of various features and identified the top 10 key bacterial genera involved. Gut microbiota co-occurrence networks showed the dominance of healthier microbiota following successful weight loss. These results suggested that the HBD intervention enhanced weight loss, which may be related to diet-induced changes in the gut microbiota.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenyan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qunyan Zhou
- Department of Nutriology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Faizan Ahmed Sadiq
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenjun Wu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Chen W, Du L, Cai C, Huang L, Zheng Q, Chen J, Wang L, Zhang X, Fang X, Wang L, Zhong Q, Zhong W, Wang J, Liao Z. Take chicks as an example: Rummeliibacillus stabekisii CY2 enhances immunity and regulates intestinal microbiota by degrading LPS to promote organism growth and development. J Funct Foods 2023; 105:105583. [DOI: 10.1016/j.jff.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
5
|
Glycine Nano-Selenium Enhances Immunoglobulin and Cytokine Production in Mice Immunized with H9N2 Avian Influenza Virus Vaccine. Int J Mol Sci 2022; 23:ijms23147914. [PMID: 35887267 PMCID: PMC9317336 DOI: 10.3390/ijms23147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
This study was performed to investigate the immune enhancement effect of glycine nano-selenium, a microelement on H9N2 avian influenza virus vaccine (H9N2 AIV vaccine) in mice. Fifty (50) Specific Pathogen Free Kunming mice aged 4−6 weeks (18−20 g Body weight) were randomly divided into five groups: control normal group, which received no immunization + 0.5 mL 0.9% normal saline, positive control group, which received H9N2 AIV vaccine + 0.5 mL 0.9% normal saline, 0.25 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.25 mg/kg selenium solution, 0.5 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 0.5 mg/kg selenium solution, and 1 mg/kg selenium group, which received H9N2 AIV vaccine + 0.5 mL 1 mg/kg selenium solution. Hematoxylin and eosin staining, enzyme linked immunosorbent assay (ELISA), and quantitative real time polymerase chain reaction (qRT-PCR) methods were used to investigate the pathological changes, immunoglobulin levels, and cytokine gene expressions in this study. The results showed that all tested doses (0.25 mg/kg, 0.5 mg/kg and 1.00 mg/kg) of glycine nano-selenium did not lead to poisoning in mice. In addition, when compared to the positive control group, glycine nano-selenium increased the immunoglobin indexes (IgA, IgG, IgM and AIV-H9 IgG in serum) as well as the mRNA levels of IL-1β, IL-6 and INF-γ in the liver, lungs, and spleen (p < 0.05). In summary, glycine nano-selenium could enhance the efficacy of avian influenza vaccine.
Collapse
|
6
|
Ren Z, Xie L, Okyere SK, Wen J, Ran Y, Nong X, Hu Y. Antibacterial Activity of Two Metabolites Isolated From Endophytic Bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Front Microbiol 2022; 13:860009. [PMID: 35602058 PMCID: PMC9121010 DOI: 10.3389/fmicb.2022.860009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Ageratina adenophora, as an invasive and poisonous weed, seriously affects the ecological diversity and development of animal husbandry. Weed management practitioners have reported that it is very difficult to control A. adenophora invasion. In recent years, many researchers have focused on harnessing the endophytes of the plant as a useful resource for the development of pharmacological products for human and animal use. This study was performed to identify endophytes with antibacterial properties from A. adenophora. Agar well diffusion method and 16S rRNA gene sequencing technique were used to screen and identify endophytes with antibacterial activity. The response surface methodology and prep- high-performance liquid chromatography were used to determine the optimizing fermentation conditions and isolate secondary metabolites, respectively. UV-visible spectroscopy, infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrum were used to determine the structures of the isolated metabolites. From the experiment, we isolated a strain of Bacillus velezensis Ea73 (GenBank no. MZ540895) with broad-spectrum antibacterial activity. We also observed that the zone of inhibition of B. velezensis Ea73 against Staphylococcus aureus was the largest when fermentation broth contained 6.55 g/L yeast extract, 6.61 g/L peptone, 20.00 g/L NaCl at broth conditions of 7.95 pH, 51.04 h harvest time, and a temperature of 27.97°C. Two antibacterial peptides, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), were successfully extracted from B. velezensis Ea73. These two peptides exhibited mild inhibition against S. aureus and Escherichia coli. Therefore, we isolated B. velezensis Ea73 with antibacterial activity from A. adenophora. Hence, its metabolites, Cyclo (L-Pro-L-Val) and Cyclo (L-Leu-L-Pro), could further be developed as a substitute for human and animal antibiotics.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
- *Correspondence: Yanchun Hu
| |
Collapse
|
7
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Ma X, Okyere SK, Hu L, Wen J, Ren Z, Deng J, Hu Y. Anti-Inflammatory Activity and Mechanism of Cryptochlorogenic Acid from Ageratina adenophora. Nutrients 2022; 14:439. [PMID: 35276797 PMCID: PMC8839916 DOI: 10.3390/nu14030439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
Ageratina adenophora is an invasive plant known for its toxicity to livestock. Current research on this plant has shifted from toxicity prevention to the beneficial utilization of plant resources. This study was performed to investigate the effects and mechanisms of cryptochlorogenic acid (CCGA) isolated from Ageratina adenophora on the inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 cells. RAW264.7 cells were pretreated with CCGA (200, 100, and 50 μg/mL) and subsequently stimulated with LPS (1 μg/mL) for 16 h. The cytotoxicity of CCGA was tested using the Cell Counting Kit (CCK8). The mechanism of action of CCGA in attenuating inflammation was also identified using enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction, and Western blot. The results showed that CCGA had a maximal safe concentration of 200 mg/mL. Moreover, CCGA reduced the level of nitric oxide (NO) and iNOS in LPS-induced RAW264.7 cells (p < 0.01). In addition, CCGA reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) and cyclooxygenase-2 (COX-2) in LPS-induced RAW264.7 cells at both the mRNA and protein levels (p < 0.01). CCGA prevented the activation of nuclear factor-kappa B (NF-kB) in LPS-induced RAW264.7 cells via the inhibition of IKK and IκB phosphorylation and the degradation of IκB proteins (p < 0.01). This finding indicated that CCGA isolated from A. adenophora may be a potential candidate for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liwen Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|