1
|
Zuo H, Jiang W, Gao J, Ma Z, Li C, Peng Y, Jin J, Zhan X, Lv W, Liu X, Hu J, Zhang M, Jia Y, Xu Z, Tang J, Zheng R, Zuo B. SYISL Knockout Promotes Embryonic Muscle Development of Offspring by Modulating Maternal Gut Microbiota and Fetal Myogenic Cell Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410953. [PMID: 39680624 DOI: 10.1002/advs.202410953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Embryonic muscle fiber formation determines post-birth muscle fiber totals. The previous research shows SYISL knockout significantly increases muscle fiber numbers and mass in mice, but the mechanism remains unclear. This study confirms that the SYISL gene, maternal gut microbiota, and their interaction significantly affect the number of muscle fibers in mouse embryos through distinct mechanisms, as SYISL knockout alters maternal gut microbiota composition and boosts butyrate levels in embryonic serum. Both fecal microbiota transplantation and butyrate feeding significantly increase muscle fiber numbers in offspring, with butyrate inhibiting histone deacetylases and increasing histone acetylation in embryonic muscle. Combined analysis of RNA-seq between wild-type and SYISL knockout mice with ChIP-seq for H3K9ac and H3K27ac reveals that SYISL and maternal microbiota interaction regulates myogenesis via the butyrate-HDAC-H3K9ac/H3K27ac pathway. Furthermore, scRNA-seq analysis shows that SYISL knockout alone significantly increases the number and proportion of myogenic cells and their dynamics, independently of regulating histone acetylation levels. Cell communication analysis suggests that this may be due to the downregulation of signaling pathways such as MSTN and TGFβ. Overall, multiple pathways are highlighted through which SYISL influences embryonic muscle development, offering valuable insights for treating muscle diseases and improving livestock production.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Gao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibo Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Hu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengdi Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiming Jia
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
He S, Yuan Z, Dai S, Wang Z, Zhao S, Zhang B, Mao H, Wu D. Exploring the Spatial Variation in the Microbiota and Bile Acid Metabolism of the Compound Stomach in Intensively Farmed Yaks. Microorganisms 2024; 12:1968. [PMID: 39458277 PMCID: PMC11509861 DOI: 10.3390/microorganisms12101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Yaks are one of the important livestock on the Qinghai-Tibet Plateau, providing abundant dairy and meat products for the local people. The formation of these dairy and meat products mainly relies on the microbiota in their gastrointestinal tract, which digests and metabolizes plant feed. The yak's gastrointestinal microbiota is closely related to the health and production performance of the host, but the molecular mechanisms of diet-induced effects in intensively farmed yaks remain to be elucidated. In this study, 40 chyme samples were collected from the four stomach chambers of 10 intensively farmed yaks, and the bacterial diversity and bile acid changes in the rumen (SFRM), reticulum (SFRC), omasum (SFOM), and abomasum (SFAM) were systematically analyzed using 16S rRNA sequencing and bile acid metabolism. Our results showed that the gastrointestinal microbiota mainly distributes in the four-chambered stomach, with the highest microbial diversity in the reticulum. There is a highly negative correlation among the microbiota in the four chambers. The dominant bacterial phyla, Bacteroidota and Firmicutes, were identified, with Rikenellaceae_RC9_gut_group being the dominant genus, which potentially helps maintain short-chain fatty acid levels in the stomach. In contrast, the microbiome within the four stomach chambers synergistically and selectively altered the content and diversity of bile acid metabolites in response to intensive feeding. The results of this study provide new insights into the microbiota and bile acid metabolism functions in the rumen, reticulum, omasum, and abomasum of yaks. This can help uncover the role of gastrointestinal microbiota in yak growth and metabolic regulation, while also providing references for improving the production efficiency and health of ruminants.
Collapse
Affiliation(s)
- Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Zaimei Yuan
- Kunming Animal Disease Prevention and Control Center, Kunming 650106, China;
| | - Sifan Dai
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Zibei Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Shusheng Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Bin Zhang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China;
| | - Huaming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| |
Collapse
|
3
|
Li M, Zi X, Lv R, Zhang L, Ou W, Chen S, Hou G, Zhou H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023; 11:2320. [PMID: 37764163 PMCID: PMC10535588 DOI: 10.3390/microorganisms11092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Renlong Lv
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Lidong Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wenjun Ou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guanyu Hou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hanlin Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
4
|
Gu M, Wang S, Di A, Wu D, Hai C, Liu X, Bai C, Su G, Yang L, Li G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. Int J Mol Sci 2023; 24:ijms24098120. [PMID: 37175828 PMCID: PMC10178895 DOI: 10.3390/ijms24098120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Myostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Song Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Kalds P, Zhou S, Huang S, Gao Y, Wang X, Chen Y. When Less Is More: Targeting the Myostatin Gene in Livestock for Augmenting Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4216-4227. [PMID: 36862946 DOI: 10.1021/acs.jafc.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to increase meat production is one of the main questions in animal breeding. Selection for improved body weight has been made and, due to recent genomic advances, naturally occurring variants that are responsible for controlling economically relevant phenotypes have been revealed. The myostatin (MSTN) gene, a superstar gene in animal breeding, was discovered as a negative controller of muscle mass. In some livestock species, natural mutations in the MSTN gene could generate the agriculturally desirable double-muscling phenotype. However, some other livestock species or breeds lack these desirable variants. Genetic modification, particularly gene editing, offers an unprecedented opportunity to induce or mimic naturally occurring mutations in livestock genomes. To date, various MSTN-edited livestock species have been generated using different gene modification tools. These MSTN gene-edited models have higher growth rates and increased muscle mass, suggesting the high potential of utilizing MSTN gene editing in animal breeding. Additionally, post-editing investigations in most livestock species support the favorable influence of targeting the MSTN gene on meat quantity and quality. In this Review, we provide a collective discussion on targeting the MSTN gene in livestock to further encourage its utilization opportunities. It is expected that, shortly, MSTN gene-edited livestock will be commercialized, and MSTN-edited meat will be on the tables of ordinary customers.
Collapse
Affiliation(s)
- Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yawei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Gao L, Wang S, Yang M, Wang L, Li Z, Yang L, Li G, Wen T. Gut fungal community composition analysis of myostatin mutant cattle prepared by CRISPR/Cas9. Front Vet Sci 2023; 9:1084945. [PMID: 36733427 PMCID: PMC9886680 DOI: 10.3389/fvets.2022.1084945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Myostatin (MSTN) regulates muscle development and body metabolism through a variety of pathways and is a core target gene for gene editing in livestock. Gut fungi constitute a small part of the gut microbiome and are important to host health and metabolism. The influence of MSTN mutations on bovine gut fungi remains unknown. In this study, Internal Transcribed Spacer (ITS) high-throughput sequencing was conducted to explore the composition of gut fungi in the MSTN mutant (MT) and wild-type (WT) cattle, and 5,861 operational taxonomic units (OTUs) were detected and classified into 16 phyla and 802 genera. The results of the alpha diversity analysis indicated that no notable divergence was displayed between the WT and MT cattle; however, significant differences were noticed in the composition of fungal communities. Eight phyla and 18 genera were detected. According to the prediction of fungal function, saprotroph fungi were significantly more abundant in the MT group. The correlation analysis between gut fungal and bacterial communities revealed that MSTN mutations directly changed the gut fungal composition and, at the same time, influenced some fungi and bacteria by indirectly regulating the interaction between microorganisms, which affected the host metabolism further. This study analyzed the role of MSTN mutations in regulating the host metabolism of intestinal fungi and provided a theoretical basis for the relationship between MSTN and gut fungi.
Collapse
Affiliation(s)
- Li Gao
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Song Wang
- College of Life Science, Northeast Agricultural University, Harbin, China,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China
| | - Lili Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Zhen Li
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China,*Correspondence: Lei Yang ✉
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China,Guangpeng Li ✉
| | - Tong Wen
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,Tong Wen ✉
| |
Collapse
|
7
|
Zhao Y, Yang L, Su G, Wei Z, Liu X, Song L, Hai C, Wu D, Hao Z, Wu Y, Zhang L, Bai C, Li G. Growth Traits and Sperm Proteomics Analyses of Myostatin Gene-Edited Chinese Yellow Cattle. Life (Basel) 2022; 12:627. [PMID: 35629295 PMCID: PMC9147296 DOI: 10.3390/life12050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Chinese Yellow Cattle, an ancient and domesticated breed for draft service, provide unique animal genetic resources with excellent genetic features, including crude feed tolerance, good stress resistance, strong adaptability, and tender meat quality; however, their production performance and meat yield are significantly inferior. Herein, the myostatin gene (MSTN), a negative regulator of skeletal muscle development, was knocked out by CRISPR/Cas9 technology. Eight MSTN gene-edited bull calves (MT) were born, and six of them are well-developed. Compared with the control cattle (WT), the growth trait indexes of MT cattle were generally increased, and the hindquarters especially were significantly improved. The biochemical indexes and the semen characteristics demonstrated that MT bulls were healthy and fertile. Consistent with our conjecture, the wobble and beating of MT bull spermatozoa were significantly higher than that of WT. Nine sperm motility-related proteins and nineteen mitochondrial-related proteins were identified by up-regulation in MT bull spermatozoa using FLQ proteomic technique and act to govern sperm flagellum assembly, organization, and beating and provide sufficient energy for sperm motility. The current study confirmed that the MSTN gene-edited Chinese Yellow cattle have improved growth traits and normal fertility, which can be used for beef cattle production and breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| |
Collapse
|